
RubiksNet: Learnable 3D-Shift for Efficient
Video Action Recognition

Linxi Fan1*, Shyamal Buch1*, Guanzhi Wang1, Ryan Cao1,
Yuke Zhu2,3, Juan Carlos Niebles1, and Li Fei-Fei1

1Stanford Vision and Learning Lab 2UT Austin 3NVIDIA

Abstract. Video action recognition is a complex task dependent on
modeling spatial and temporal context. Standard approaches rely on
2D or 3D convolutions to process such context, resulting in expensive
operations with millions of parameters. Recent efficient architectures
leverage a channel-wise shift-based primitive as a replacement for temporal
convolutions, but remain bottlenecked by spatial convolution operations
to maintain strong accuracy and a fixed-shift scheme. Naively extending
such developments to a 3D setting is a difficult, intractable goal. To this
end, we introduce RubiksNet, a new efficient architecture for video action
recognition which is based on a proposed learnable 3D spatiotemporal
shift operation instead. We analyze the suitability of our new primitive
for video action recognition and explore several novel variations of our
approach to enable stronger representational flexibility while maintaining
an efficient design. We benchmark our approach on several standard video
recognition datasets, and observe that our method achieves comparable
or better accuracy than prior work on efficient video action recognition
at a fraction of the performance cost, with 2.9-5.9x fewer parameters and
2.1-3.7x fewer FLOPs. We also perform a series of controlled ablation
studies to verify our significant boost in the efficiency-accuracy tradeoff
curve is rooted in the core contributions of our RubiksNet architecture.

Keywords: efficient action recognition, spatiotemporal, learnable shift,
budget-constrained, video understanding

1 Introduction

Analyzing videos to recognize human actions is a critical task for general-purpose
video understanding algorithms. However, action recognition can be computation-
ally costly, requiring processing of several frames spatiotemporally to ascertain
the correct action. As embodied applications of video recognition for autonomous
agents and mobile devices continue to scale, the need for efficient recognition ar-
chitectures with fewer parameters and compute operations remains ever-growing.

Prior efforts for video action recognition [1,23] rely on deep neural network
architectures with expensive convolution operations across spatial and temporal

* equal contribution lead author; {jimfan,shyamal}@cs.stanford.edu

2 L. Fan* and S. Buch* et al.

Fig. 1: Top: Prior work for efficient shift-based video recognition [16] has explored
(a) fixed temporal shift operation on expensive 2D convolution features, with (c)
a fixed shift allocation network design. Bottom: We introduce RubiksNet, a new
architecture based on a (b) learnable 3D-shift layer (RubiksShift) that learns to
perform spatial (h,w) and temporal (t) shift operations jointly end-to-end, while
also (d) learning an effective layer-wise network allocation of a constrained shift
budget. Our model significantly improves the accuracy-efficiency boundary.

context, which are often prohibitive for resource-constrained application domains.
Recent work has proposed to improve the efficiency of the spatial and temporal
operations separately [16,18,25,31]. However, they are still largely bounded by the
efficiency of the base spatial aggregation method through spatial convolutions.

In images, spatial shift operations [11,29] have been proposed as a GPU-
efficient alternative to traditional convolution operations, and architectures built
using these operations have shown promise for efficient image recognition, though
accuracy is limited. Recently, a temporal shift module (TSM) [16] based on
hand-designed fixed temporal shift (Fig. 1, top) has been proposed to be used
with existing 2D convolutional image recognition methods [26] for action recogni-
tion. However, the efficiency of their architecture family remains limited by the
parameter and computation cost for spatial operations, as in other prior work.

A crucial observation is that much of the input spatiotemporal context con-
tained in consecutive frames of a video sequence is often redundant to the action
recognition task. Furthermore, the impact of modeling capacity on the action
recognition task likely varies significantly at different depths in the architecture. In
other words, action recognition in videos poses a unique opportunity for pushing
the boundaries of the efficiency-accuracy tradeoff curve by considering efficient
shift operations in both space and time dimensions with flexible allocations.

However, a key limitation towards a naive generalization from fixed temporal
shift [16] to a spatiotemporal shift scheme is that the design space becomes

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 3

intractable. In particular, we would need to exhaustively explore the number of
channels that are shifted for each dimension, the magnitude of these shifts, and the
underlying layer design combining each of these operations, among other design
choices. Thus, there is a clear motivation for enabling the architecture to learn the
shift operations during training itself. Recent work [11] has explored the possibility
of learning shifts for 2D image processing. However, the challenge of generalizing
this formulation to enable stable and effective spatiotemporal optimization of
shift-based operations on high-dimensional video input has remained unexplored.

To this end, we propose RubiksNet: a new video action recognition archi-
tecture based on a novel spatiotemporal shift layer (RubiksShift) that learns
to perform shift operations jointly on spatial and temporal context. We explore
several variations of our design, and find that our architecture learns effective
allocations of shift operations within a constrained shift budget. We bench-
mark our overall approach on several standard action recognition benchmarks,
including large-scale temporal-focused datasets like Something-Something-v1 [6]
and Something-Something-v2 [17], as well as others like UCF-101 [22] and HMDB
[15]. We observe that our architecture can maintain competitive accuracy with
the prior state-of-the-art on efficient shift-based action recognition [16] while
simultaneously improving the efficiency and number of parameters by a large
margin, up to 5.9x fewer parameters and 3.7x fewer FLOPs. Our controlled
ablation analyses also demonstrate that these efficiency-accuracy gains come
from the joint ability of our architecture to synergize spatial and temporal shift
learning, as well as effective learned allocation of shift across the network.

2 Related Work

Action Recognition. The action recognition task in videos focuses on the
classification of activities in video clips amongst a set of action classes. The
initial set of deep network-based approaches processed frames individually using
2D convolutional neural networks [13,21,26]. For example, Temporal Segment
Network (TSN) extracts features from sampled frames before averaging them
for the final prediction [26]. While such methods are relatively efficient and
parallelizable, they also do not model the temporal dynamics well. As such, the
dominant paradigm in video action recognition is centered around the usage of
spatial and temporal convolutions over the 3D space [1,5,12,23]. There are also
other action recognition works that exploit temporal information [32]. While
these deep networks are more accurate, the increase in computational cost has
proven to be substantial and prohibitive for efficiency-conscious applications.

Recent progress in action recognition has largely focused on two directions:
(1) improving efficiency by considering a mixture of 3D convolutions and separate
spatial + temporal convolution operations [18,25,31,36], and (2) incorporating
longer term temporal reasoning [27,34,36] to further improve the accuracy of the
methods. We differentiate this work from prior efforts along both axes. Along the
first, we note that the above methods make progress towards bringing cubic scaling
of 3D convolutions towards the quadratic scaling of 2D convolutions, but the

4 L. Fan* and S. Buch* et al.

spatial kernel remains an inherent strong bound on performance. Our approach
offers an alternative that is much more efficient and has much fewer parameters
by eliminating the need for 2D or 3D convolutions in the architecture. Along
the second, our method introduces a learnable spatiotemporal shift operation
that efficiently increases the effective receptive field capacity of the network, and
allows it to flexibly allocate its capacity across the network, in contrast with
prior efforts that leveraged fixed shift operations throughout the network [16].
Efficient Neural Networks for Images and Video. Convolutions have been
the main computational primitive in deep neural network approaches for computer
vision tasks [3,8,9,29,33]. Recently, the shift operation has been proposed as a
more hardware efficient alternative to spatial convolution for image classification
[11,29,35]. While shift has been examined as a replacement for 1D temporal
convolutions recently [16], the possibility of a learnable 3D shift operation has
remained unexplored due to the challenges afforded by joint learning of the shift
primitive across spatial and temporal context, and the traditional advantage
spatial convolutions hold in action recognition architectures in terms of accuracy.
We aim to propose a technique that need not depend on any spatial convolution
operations during inference – only shift and pointwise convolution.

Additionally, our work remains complementary to literature on neural network
compression [30], so while our proposed method saves substantially on model
size and computation cost, it is possible that application of such techniques can
lead to further gains. We also highlight work that ShuffleNet [33], MobileNet
[9,20], and SqueezeNet [10] for efficient 2D image classification. Tran et al. [24]
factorizes 3D group convolutions while preserving channel interactions. The aim
of our work is to develop video models that can similarly be applied in embodied
vision applications, where efficiency is essential.

3 Technical Approach

In this section, we describe our proposed method for efficient action recognition,
where the task is to take an input video clip and classify which of a set of human
action categories is present. We first describe our proposed RubiksShift layers for
replacing spatiotemporal convolutions with learnable spatiotemporal shifts. Then,
we detail how we compose these operations into the RubiksNet architecture.

3.1 RubiksShift: Learnable 3D Shift

Spatiotemporal Convolution. In a traditional convolutional network with 3D
spatiotemporal convolutions, the input to each layer of the network is a 4D tensor
F ∈ RC×T×H×W , C is the number of input channels, T the temporal length, and
H,W are the height and width respectively. The 3D spatiotemporal convolution
operation [23] is then defined as:

Oc′,t,h,w =
∑
c,i,j,k

Kc′,c,k,i,jFc,t+k̂,h+î,w+ĵ (1)

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 5

Fig. 2: Our proposed RubiksShift layer (Section 3.1) is the primary driver of
our overall RubiksNet architecture (Section 3.2). RubiksShift aims to perform a
spatiotemporal shift operation on input 4D tensor along each of the input channels,
for spatial and temporal axes. (a) Our primary RubiksShift layer is based on
a continuous interpolated shift primitive, which enables a true gradient with
low additional overhead, and (b) our RubiksShift-Q alternative is a quantized
variant. (c) Finally, our RubiksShift-AQ variant enables learning integer shift
using a temporal attention layer (also see Figure 3).

where O ∈ RC′×T×H×W is the output tensor, K ∈ RC′×C×TK×HK×WK is the 3D
convolution kernel, i, j, k index along the temporal, height, and width dimensions
of the kernel, and c, c′ index along the channel dimensions. The indices î, ĵ, k̂
are the re-centered spatial and temporal indices, with k̂ = k − bTK/2c , î =
i− bHK/2c , ĵ = j − bWK/2c. Assuming H = W for simplicity, the total number
of parameters in this operation is thus C×C ′×TK×HK

2 and the computational
cost is C×C ′×(T×H2)×(TK×HK

2). Indeed, this operation scales quadratically
with the spatial input and cubically when considering temporal dimensions as
well, both in parameters and number of operations.
Fixed Spatiotemporal Shift. In this context, we propose a spatiotemporal
shift operation as an alternative to traditional 3D convolutions. Since the shift
primitive proposed in prior work can be considered an efficient special case of
depthwise-separable convolutions with fewer memory access calls [3,29,35], we
can formalize the spatiotemporal shift operation as follows:

O′c,t,h,w =
∑
i,j,k

Sc,k,i,jFc,t+k̂,h+î,w+ĵ (2)

where S ∈ {0, 1}C×TK×HK×WK , such that Sc,k,i,j = 1 if and only if (i, j, k) =
(ic, jc, kc), where ic, jc, kc are the spatiotemporal shifts associated with each
channel index c. Intuitively, if S is the identity tensor, no shift occurs since
every element maps back to itself. We note that in practice, this operation can
be efficiently implemented by indexing into the appropriate memory address,
meaning that the shift operation itself in this form requires no floating point
operations (FLOPs). We then apply a pointwise convolution to the output of Eq.
2 to integrate the information across channels to obtain our final output:

6 L. Fan* and S. Buch* et al.

Oc′,t,h,w =
∑
c

Pc′,cO
′
c,t,h,w (3)

where P is the pointwise convolution kernel with only C × C ′ parameters. As-
suming H = W , the computational cost is C × C ′ × (T ×H2), much lower than
the spatiotemporal convolution. Notably, when deploying such an architecture,
we can fuse the shift and pointwise convolution operations into a single efficient
kernel call, meaning the final parameters and operation complexity from the
spatiotemporal shift operation itself is subsumed entirely.
Learnable Spatiotemporal Shift. Finally, a key design aspect of our proposed
spatiotemporal shift operation which differentiates itself from prior work in
temporal modeling [16] is the ability of our model to learn the temporal shift
primitive. In particular, our method learns to shift over the joint spatiotemporal
context jointly, which affords the network the ability to efficiently consider a
significant span of spatiotemporal context with fewer overall parameters.

Following prior work in spatial shift [11], we consider a continuous form of the
traditionally discrete shift operation, allowing us to optimize the shift parameters
directly by backpropagation. We define the 3D shift learnable parameters as:

θ = {(γc, αc, βc) | c ∈ C} (4)

where γc, αc, βc are the temporal, vertical, and horizontal shift parameters for
each channel c. With this, we consider an alternative formulation of Equation 2:

O′c,t,h,w =
∑
i,j,k

Sθc,k,i,jFc,t+k̂,h+î,w+ĵ (5)

Sθc,k,i,j =
∏

(z,g)∈{(γc,k),(αc,i),(βc,j)}


∆z if g = dze,
1−∆z if g = bzc,
0 otherwise

(6)

with ∆z = z−bzc and g is the corresponding index to the z parameter dimension
(e.g., γc corresponds to the time index k). Here, each sparse entry Sθc,k,i,j is a
coefficient representing the product of interpolated shift contributions from all
3 dimensions. Intuitively, we are constructing a shift operation over an implicit
continuous trilinearly-interpolated input activation tensor, where the interpolation
is evaluated sparsely around the local neighborhood (23-point cube) around each
shift operation at the location of each shift parameter. We note that this equation
is once again a formalism; in practice, the operation can still be written efficiently
on the GPU with minimal additional overhead with respect to discrete shift. We
provide additional technical discussion in the supplement.

Taken together, we term this combined learnable spatiotemporal shift oper-
ation RubiksShift as shown in Figure 1. We observe that it enables our overall
architecture to learn a joint spatiotemporal shift kernel that aggregates discrimi-
native features over the full activation in an efficient manner.

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 7

Fig. 3: (a) During training, our
RubiksShift-AQ variant parameter-
izes shift with an attention distribu-
tion corresponding to integer shift
values. We can then train quantized
temporal shift with a true gradient
(under a budget constraint), in con-
strast with interpolated quantized
methods [2]. Attention softmax tem-
perature is annealed during train-
ing. (b) After training, the result-
ing one-hot attention parameters are
converted to final integer shift values
for efficient inference at test time.

Interpolated Quantized shift. While the interpolated formulation above re-
mains efficient, we can push efficiency a little higher by considering a quantized
version of the above spatiotemporal shift scheme. Our second RubiksShift variant
is a naive spatiotemporal extension based on an interpolated shift quantization
mechanism on images [2]. Briefly, during training, the model maintains a copy
of the interpolated shift parameters as floats. In the forward pass, all shifts are
rounded to the nearest integer. In the backward pass, gradient is computed with
respect to the continuous shifts and these parameters are updated by regular
gradient descent. Our ablative analysis shows that while this technique does work,
the lack of a true gradient ends up hindering performance by a large margin.
Attention Quantized Shift. To address the shortcomings of the interpolated
quantized variant, we propose RubiksShift-AQ (Fig. 3) as an alternative way to
quantize temporal shifts with exact gradient. Related to concurrent attention
pruning work [7] for 2D object recognition, we formulate temporal attention
shift as an operator for video action recognition that parameterizes shift with
an attention distribution corresponding to integer shift values. The attention
weights are then annealed to one-hot, integer-valued shifts over the course of the
training process. In this manner, the model is able to flexibly and stably learn a
high-capacity spatiotemporal representation suitable for video action recognition,
but at final inference time is as efficient as quantized shift. Given an attention
weight tensor Wattn, we compute:

Wattnshift = softmax

(
τa

Wattn

std(Wattn)

)
(7)

where τa denotes the temperature of the softmax. After the softmax operation,
every value in W is normalized between 0 and 1, which represents the attention
weight. At high τa, the values in W are close to uniform, while at extremely low
τa, W approaches a binary tensor with only one non-zero entry along each channel
slice. During training, we anneal τa exponentially to a low value, typically 10−3, at

8 L. Fan* and S. Buch* et al.

which stage we take the hard max operation to convert attention shift Wattnshift

to the equivalent discrete integer shift operation S for efficient inference.
Shift Operations Budget Constraint. Prior work [16,11] has noted that

while shift operations save parameters and FLOPs, they can still incur latency
cost through memory management. We incorporate this important aspect into our
RubikShift design. A key feature of our proposed temporal attention shift is that
we can apply a novel flexible constraint that corresponds to an overall “global
shift budget”, which penalizes the model for aggressively shifting. Importantly,
the constraint is flexible in that it only penalizes a global metric for the shift –
the specific allocation across layers at various depths in the network can then be
learned by the network. Specifically, our budget constraint loss takes the form:

Lbudget =

∣∣∣∣∣
∣∣∣∣∣ 1

NL

NL∑
l=1

(
1

C ′

∑
c,∗

W(l)
nonzero

)
−B

∣∣∣∣∣
∣∣∣∣∣ (8)

where NL is the number of layers, B is the shift budget between 0 and 1, and

W
(l)
nonzero denotes the attention weights in Wattnshift at layer l corresponding

to the non-zero shift positions. We find that our proposed RubiksShift-AQ
under budget constraint enables RubiksNet to discover interesting, non-uniform
allocations of the shift budget across the network layers while preserving the
global fraction of shift operations. To our knowledge, this is the first such method
with learnable discrete shift under a shift resource constraint. Further, we find
such learned allocation is critical to our overall design in careful ablation analysis.

3.2 RubiksNet: Model Architecture Design

Our overall architecture mirrors the residual block design in the ResNet archi-
tecture [8]. Each RubiksShift layer includes shift operations as described in Sec
3.1 and pointwise Conv1×1 operations (Eq. 3) to facilitate information exchange
across channels. We place RubiksShift layers at the “residual shift” position [16],
which fuses temporal information inside a residual branch. While we choose
ResNet-like structure as our backbone design, the RubiksShift operator is flexible
to be plugged into any architecture to replace the heavy convolutional layers.
Stable Shift Training. To improve the stability of spatiotemporal shift training,
we normalize the shift gradients to use only the direction of change [11], rather
than the magnitude. In practice, equal normalization over all 3 axes is sub-optimal,
because the spatial dimensions of video inputs (e.g., 224 × 224) are substantially
larger than the temporal dimension (e.g., 8 frames). We propose scaled gradient
normalization, which scales the gradient vector for the spatial shifts ∆θh, ∆θw
and temporal shift ∆θt onto an ellipsoid rather than a unit sphere:

∆θh =
∆θh
Z

; ∆θw =
∆θw
Z

; ∆θt =
λ∆θt
Z

, (9)

where λ is the temporal gradient scaling factor and Z is the normalization factor:

Z =
√
||∆θh||2 + ||∆θw||2 + λ||∆θt||2. (10)

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 9

Table 1: Benchmark results on the Something-Something-v2 dataset [17]. Rubik-
sNet offers strong performance across a range of base architectures as compared
with TSM [16] architecture family. 2-clip accuracy metric per [16]; FLOPs re-
ported for 1 clip, center crop for all architectures. (-) indicates value not reported.
(#x) denotes efficiency savings factor relative to analogous size TSM model.

Method Size Input
1-Clip Val 2-Clip Val

#Param. FLOPs/Video
Top-1 Top-5 Top-1 Top-5

TSN [26] Large 8 30.0 60.5 30.4 61.0 24.3M 33G
TRN [36] Large 8 48.8 77.6 - - 18.3M 16G
bLVNet-TAM [4] Large 8×2 59.1 86 - - 25M 23.8G

TSM [16]
Large 8 58.8 85.6 61.3 87.3 24.3M 33G

Medium 8 56.9 84.0 59.3 85.9 21.4M 29.4G
Small 8 49.3 77.6 51.3 79.5 11.3M 14.6G

RubiksNet (Ours)

Large 8 59.0 85.2 61.7 87.3 8.5M (2.9x) 15.8G (2.1x)
Medium 8 58.3 85.0 60.8 86.9 6.2M (3.5x) 11.2G (2.6x)

Small 8 57.5 84.3 59.8 86.2 3.6M (3.1x) 6.8G (2.1x)
Tiny 8 54.6 82.0 56.7 84.1 1.9M (5.9x) 3.9G (3.7x)

Architecture Size Versions. We design several variants of RubiksNet models
with different sizes to accommodate different computational budgets, analogous to
prior work on shift for image classification [11]. Please refer to our supplementary
material for full architecture breakdown tables. In our experiments (e.g., Table 1),
we consider different size classes of our architecture, RubiksNet-Large, Medium,
Small which all have the same channel width but different layer depths. These size
classes are chosen to correspond with TSM [16] operating on standard ResNet-50,
ResNet-34, and ResNet-18 backbones respectively. Our RubiksNet-Tiny model
has the same depth as RubiksNet-Small, but a thinner width. We leverage this
spectrum of models to generate our Pareto curves in Sec 4.

4 Experiments and Analysis

In this section, we describe the experimental details (Sec. 4.1) and results of our
method. In Sec 4.2, we detail our comparisons and analysis against the prior
art methods on several standard benchmarks, and we show our architecture
significantly pushes the state-of-the-art on the accuracy-efficiency frontier across
large and smaller scale benchmarks. Finally, in Sec. 4.3, we conduct a series of
controlled ablation studies and analysis to verify that the core scientific aspects
of our architecture are responsible for this significant gain.

4.1 Experimental Setup

Overview. We leverage the Something-Something-v1 [6], Something-Something-
v2 [17], UCF-101 [22], and HMDB [15] datasets to benchmark our approach. As

10 L. Fan* and S. Buch* et al.

Table 2: Benchmark results on the Something-Something-v1 dataset [6]. Results
are reported as 1-clip accuracy; FLOPs are reported for 1 clip, center crop for all
architectures. (-) indicates value not reported.

Method Input Val Top-1 Val Top-5 #Param. FLOPs/Video

I3D [1] 64 45.8 76.5 12.7M 111G
NL I3D + GCN [28] 32+32 46.1 76.8 303M 62.2G
S3D [31] 64 47.3 78.1 8.8M 66G
bLVNet-TAM [4] 8×2 46.4 76.6 25M 23.8G

TSN [26] 8 19.5 - 10.7M 16G
TRN [36] 8 34.4 - 18.3M 16G
ECO [37] 8 39.6 - 47.5M 32G
TSM [16] 8 45.6 74.2 24.3M 33G

RubiksNet (Ours) 8 46.4 74.5 8.5M 15.8G

a general rule, we follow training and evaluation protocols established in recent
work [4,16] for fair comparison, including input and metrics. We implement
our RubiksNet architecture and training pipeline in PyTorch, and write the
RubiksShift operators in CUDA and Pytorch C++ for efficiency.∗

Spatial Shift Pretraining. Per prior works [4,16], we pretrain the spatial
portion of our RubiksNet models on ImageNet-1k [19] to reach comparable
accuracy with spatial-shift image classification literature [11,29]. Analogous to
inflated convolution kernels [1], we initialize the spatial components of the 3D
RubiksShift layers with the learned 2D shift patterns before benchmark training.

Something-Something-V2 and -V1. Something-Something-(v2,v1) are both
large-scale datasets; SS-v2 in particular has 220k video clips and 174 action
classes. The action labels, such as “pushing something from left to right” and
“putting something next to something”, cannot be predicted by looking at only
a single frame. This challenging aspect separates this benchmark from similar
large-scale benchmarks like Kinetics [14], as also noted in [16,4]. Our spatial-
pretrained RubiksNet is jointly trained end-to-end on the full benchmark, with
the gradient normalization described in Eq. 9 for stability. For temporal attention
shift, we initialize all the attention weights by sampling from Uniform[1, 1.05],
so that the initial attention distribution is roughly uniform over all possible shift
locations. The softmax temperature is exponentially annealed from T = 2.0 to
10−3 over 40 epochs, before conversion to discrete integer shifts for evaluation.

UCF-101 and HMDB-51. These standard benchmarks have 101 and 51 action
classes, respectively, and are smaller scale than the SS-v1/2 datasets. We follow the
standard practice from prior work [16,26] and pretrain our model on Kinetics [1]
before fine-tuning on each benchmark. For fine-tuning, we follow the same general
learning schedule protocol as Something-Something-v2, normalizing gradients
again per Equation 9 and following a similar attention shift annealing schedule.

∗See rubiksnet.stanford.edu project page for supplementary material.

rubiksnet.stanford.edu

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 11

Table 3: Quantitative results on UCF-101 [22] and HMDB-51 [15]. 2-clip metric,
1-clip FLOPs per [16]. Pareto curve results in Fig. 4 and supplement.

Method Size
UCF-101 HMDB-51

#Param. FLOPs
Val Top-1 Val Top-5 Val Top-1 Val Top-5

TSN [26] Large 91.7 99.2 64.7 89.9 23.7M 33G
TSM [16] Large 95.2 99.5 73.5 94.3 23.7M 33G

RubiksNet Large 95.5 99.6 74.6 94.4 8.5M 15.8G

Fig. 4: We report the Pareto curves for our method compared with prior work
[16], with size of the circle corresponding to the number of model parameters,
as per Tables 1-3. Our RubiksNet architecture family consistently offers better
performance-efficiency tradeoff across datasets. (Additional vis. in supplement)

4.2 Benchmark Comparisons and Analysis

Baselines. Our key point of comparison is the recent state-of-the-art shift-based
action recognition architecture TSM [16] from ICCV 2019. In contrast with our
technique, TSM operates with a hand-designed, fixed shift approach on the time
dimension only, with heuristics found by extensive architecture tuning. TSM also
has a fixed allocation scheme across its network. In our benchmark comparisons,
we also include comparisons against much heavier but well-known architectures,
like I3D, S3D, and others [1,28,31,4] for reference. Other networks, like TSN [26]
and ECO [37] are also included as comparison points.

Evaluation. We follow the evaluation convention in prior work [16,27,28] and
report results from two evaluation protocols. For “1-Clip Val” (Table 1), we
sample only a single clip per video and the center 224×224 crop for evaluation.
For “2-Clip Val”, we sample 2 clips per video and take 3 equally spaced 224×224
crops from the full resolution image scaled to 256 pixels on the shorter side.
2-Clip evaluation yields higher accuracy, but requires more computation than
1-Clip evaluation. We employ the same protocol for all methods in all the tables.

Quantitative Analysis. In Tables 1-3, we demonstrate that our proposed
architectures consistently achieve competitive or better accuracies than their
baseline counterparts at a range of model capacities, while achieving significantly
higher efficiency in both parameter counts and FLOPs. Additionally, we provide
a detailed efficiency analysis breakdown in our supplement.

12 L. Fan* and S. Buch* et al.

Table 4: Ablation analysis: effect of learnable spatial and temporal shifts (Sec.
4.3). RubiksNet’s ability to learn spatial and temporal shift jointly significantly
improves over fixed, heuristic methods over spatial [29] and time [16] dimensions.

Spatial Shift Type Temporal Shift Type Val Top-1 (Large) Val Top-1 (Small)

Learned Learned 71.4 69.5
Learned Fixed [16] 69.5 67.8

Fixed [29] Learned 70.0 67.5
Fixed [29] Fixed [16] 68.3 65.7

Table 5: Ablation analysis: impact of RubiksShift design (Sec. 4.3). Our attention-
quantized variant is able to learn discrete shift operations with comparable
performance to full interpolated, while observing shift/latency budget constraints.

RubiksShift Type Val Top-1 Exact Gradient Integer Shift Budget

Interpolated (RS) 61.7 X
Interpolated Quantized (RS-Q) 58.2 X
Attention Quantized (RS-AQ) 61.6 X X X (0.125)

We also benchmark several sizes of our model to draw a Pareto curve of
performance and efficiency. In Figure 4, we visualize Pareto curves for our
approach against TSM on multiple benchmarks. We observe a consistent trend
that our method significantly improves the accuracy-efficiency tradeoff for efficient
action recognition architectures. On Something-Something-v2 datasets (Table 1),
our most efficient model, RubiksNet-Tiny, outperforms TSM-Small by 5.3 absolute
percentage points, while reducing parameters by 5.9x and FLOPs by 3.7x. This
indicates that RubiksNet performs especially well in the low-resource regime when
compared against prior work. Towards the other extreme, our highest-end model
(RubiksNet-Large) consumes 24.1% fewer parameters and comparable FLOPs to
the lowest-end baseline model (TSM-Small), while exceeding the latter’s top 1
accuracy by more than 10 absolute percentage points.
Qualitative Analysis. In Figure 6, we visualize spatiotemporal shift operations
across different layers of a trained RubiksNet architecture, showing how the model
efficiently incorporates video context to provide an action recognition prediction
by increasing its receptive field and shift operations deeper in the network. We
include additional video visualizations and analysis in the supplement.

4.3 Ablations and Analysis

Finally, we provide controlled ablations and analysis over our core RubiksNet
design principles. In particular, we verify that jointly learning our 3D-shift
operations is key to our accuracy-efficiency improvements by synergizing both
spatial and temporal shift learning. Futher, we verify our RubiksShift-AQ variant
provides strong performance under a strict global shift (latency) budget.

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 13

Shift-T Budget (Latency)
(Ratio of Non-Zero Shift)

Layers Rubiks-AQ Fixed

all 0.25 0.25

1-4 0.23 0.25
5-12 0.15 0.25
13-48 0.23 0.25
49-51 0.74 0.25

Fig. 5: We visualize our learned shifts distribution using our proposed attention
quantized shift RubiksNet. The bottom labels are the different shifts (−1, 0,+1)
for a kernel size 3 RubiksShift-AQ temporal kernel, and the y-axis shows the
proportion of channels with that temporal shift operation. Each colored bar
represents a different layer, and we increase the depth of the network moving left
to right. We observe that RubiksNet is able to learn to save its shift operations
budget from early layers (few nonzero shift operations) to increase temporal
modeling ability at deeper ones. Table 4 shows how this learned allocation
consistently improves over heuristic techniques like TSM [16] that have a fixed
shift budget allocation regardless of depth (shown by black horizontal bars above).

Fig. 6: We visualize the overall learned interpolated shift distribution across
spatial (H,W) and temporal (T) dimensions at different layers in the RubiksNet
architecture. RubiksNet is conservative with shift operations in early layers,
while increasing the 3D receptive field in deeper layers for better spatiotemporal
modeling. Please refer to supplement for additional video visualizations.

Ablation: Learned vs. Fixed. Our first ablation experiment provides a con-
trolled analysis on the effect of learning the spatial and temporal shift aspects
respectively. We describe our results in Table 4. We report top-1 accuracy results
on the HMDB dataset for both Large and Small model size class. Critically,
the architecture in all cases remains constant within a given model class size so
there is no confounder due to different backbones. The only change is whether
an aspect is “learned” or “fixed”. In the fixed cases, we initialize the spatial
and temporal shift parameters based on the heuristic initialization provided by
ShiftNet [29] and TSM [16], respectively. Spatial and temporal learned cases are
based on the RubiksNet (RubiksShift-AQ) method. For learned temporal, we

14 L. Fan* and S. Buch* et al.

set our budget constraint to 0.25 to exactly match that of the TSM [16] fixed
setting for fair comparison and to ensure the same number of shift operations
are performed. We find that our RubiksNet approach for learning spatial and
temporal dimensions jointly consistently outperforms the ablations.
Ablation: RubiksShift-AQ. Our second ablation verifies the efficacy of the
proposed RubiksShift layers and its variations. We report our results in Table 5.
Here, we highlight that our RubiksShift-AQ is able to achieve comparable accuracy
with a budget constraint of only 0.125 shift ratio, in comparison to the full
RubikShift variant. In contrast with the naive RubiksShift-Q variant, RubiksShift-
AQ enables discrete shift learned with true gradient and substantially outperforms.
We observe that given a shift budget constraint, our attention shift mechanism
is able to learn nontrivial temporal patterns (Figure 5) without hand-engineered
prior knowledge. The network chooses to allocate more non-zero shifts for deeper
layers, likely because heavier information exchange in the more abstract feature
space is beneficial to the network’s temporal modeling capability. Such findings
are in alignment with traditional hand-designed “top-heavy” spatiotemporal
convolutional networks [31]. Importantly, RubiksNet’s learned temporal shift
pattern can be thought of as an allocation of the limited “temporal modeling
power budget”. Prior works like [31] enumerate many configurations of temporal
modeling allocation (i.e. permutations of Conv2D and Conv3D layers), and test
them individually to find the best candidate. In contrast, our proposed method
discovers a good temporal allocation pattern from random temporal initialization.

5 Conclusion

We introduced RubiksNet, a new efficient architecture for video action recognition.
We examined the potential for a model based on our proposed 3D-spatiotemporal
RubiksShift operations, and explored several novel variations of our design that
enable stable joint training with flexible shift budget allocation. We benchmarked
our method on several standard action recognition benchmarks, and find that
RubiksNet can match or exceed the accuracies given by the previous state-of-
the-art shift-based action recognition architecture at a fraction of the parameter
and FLOP cost. Through careful and controlled ablations, we verified these gains
are rooted in our core architecture contributions, from the joint learning of the
spatial and temporal shifts to RubiksNet’s ability to learn a flexible allocation of
shift budget to maximize accuracy at minimal shift cost.

Acknowledgements. L. Fan and S. Buch are supported by SGF and NDSEG
fellowships, respectively. This research was supported in part by grants from
Toyota Research Institute (TRI), ONR grant N00014-19-1-2477, and ONR MURI
grant N00014-16-1-2127. Some computational support for experiments was pro-
vided by Google Cloud and NVIDIA. This article reflects the authors’ opinions
and conclusions, and not any other entity. We thank Ji Lin, Song Han, De-An
Huang, Danfei Xu, the general Stanford Vision Lab (SVL) community, and our
anonymous reviewers for helpful comments and discussion.

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 15

References

1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the
kinetics dataset. In: proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 6299–6308 (2017) 1, 3, 10, 11

2. Chen, W., Xie, D., Zhang, Y., Pu, S.: All you need is a few shifts: Designing efficient
convolutional neural networks for image classification. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 7241–7250 (2019) 7

3. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 1251–1258 (2017) 4, 5

4. Fan, Q., Chen, C.F.R., Kuehne, H., Pistoia, M., Cox, D.: More is less: Learning
efficient video representations by big-little network and depthwise temporal aggre-
gation. In: Advances in Neural Information Processing Systems. pp. 2261–2270
(2019) 9, 10, 11

5. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for video
action recognition. In: Advances in neural information processing systems. pp.
3468–3476 (2016) 3

6. Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J., Westphal, S., Kim,
H., Haenel, V., Fruend, I., Yianilos, P., Mueller-Freitag, M., Hoppe, F., Thurau, C.,
Bax, I., Memisevic, R.: The “something something” video database for learning
and evaluating visual common sense. In: The IEEE International Conference on
Computer Vision (ICCV) (Oct 2017) 3, 9, 10

7. Hacene, G.B., Lassance, C., Gripon, V., Courbariaux, M., Bengio, Y.: Attention
Based Pruning for Shift Networks. arXiv:1905.12300 [cs] (May 2019) 7

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016) 4, 8

9. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,
Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017) 4

10. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.:
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model
size. arXiv preprint arXiv:1602.07360 (2016) 4

11. Jeon, Y., Kim, J.: Constructing fast network through deconstruction of convolution.
In: Advances in Neural Information Processing Systems. pp. 5951–5961 (2018) 2, 3,
4, 6, 8, 9, 10

12. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for human
action recognition. IEEE transactions on pattern analysis and machine intelligence
35(1), 221–231 (2012) 3

13. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition. pp. 1725–1732
(2014) 3

14. Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S.,
Viola, F., Green, T., Back, T., Natsev, P., et al.: The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950 (2017) 10

15. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video
database for human motion recognition. In: Computer Vision (ICCV), 2011 IEEE
International Conference on. pp. 2556–2563. IEEE (2011) 3, 9, 11

16 L. Fan* and S. Buch* et al.

16. Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video under-
standing (2018) 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14

17. Mahdisoltani, F., Berger, G., Gharbieh, W., Fleet, D., Memisevic, R.: On the effec-
tiveness of task granularity for transfer learning. arXiv preprint arXiv:1804.09235
(2018) 3, 9

18. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-
3d residual networks. In: proceedings of the IEEE International Conference on
Computer Vision. pp. 5533–5541 (2017) 2, 3

19. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recogni-
tion challenge. International Journal of Computer Vision 115(3), 211–252 (2015)
10

20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv2:
Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4510–4520 (2018) 4

21. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recogni-
tion in videos. In: Advances in neural information processing systems. pp. 568–576
(2014) 3

22. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes
from videos in the wild. arXiv preprint arXiv:1212.0402 (2012) 3, 9, 11

23. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal
features with 3d convolutional networks. In: Proceedings of the IEEE international
conference on computer vision. pp. 4489–4497 (2015) 1, 3, 4

24. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-
separated convolutional networks. In: Proceedings of the IEEE International Con-
ference on Computer Vision. pp. 5552–5561 (2019) 4

25. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at
spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 6450–6459 (2018) 2,
3

26. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Van Gool, L.: Temporal
segment networks: Towards good practices for deep action recognition. In: European
Conference on Computer Vision. pp. 20–36. Springer (2016) 2, 3, 9, 10, 11

27. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.
7794–7803 (2018) 3, 11

28. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 399–417 (2018) 10, 11

29. Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., Gholaminejad, A.,
Gonzalez, J., Keutzer, K.: Shift: A zero flop, zero parameter alternative to spatial
convolutions. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 9127–9135 (2018) 2, 4, 5, 10, 12, 13

30. Wu, C.Y., Zaheer, M., Hu, H., Manmatha, R., Smola, A.J., Krähenbühl, P.: Com-
pressed video action recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 6026–6035 (2018) 4

31. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature
learning: Speed-accuracy trade-offs in video classification. In: Proceedings of the
European Conference on Computer Vision (ECCV). pp. 305–321 (2018) 2, 3, 10,
11, 14

32. Yao, G., Lei, T., Zhong, J.: A review of convolutional-neural-network-based action
recognition. Pattern Recognition Letters 118, 14–22 (2019) 3

RubiksNet: Learnable 3D-Shift for Efficient Video Action Recognition 17

33. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 6848–6856 (2018) 4

34. Zhao, Y., Xiong, Y., Lin, D.: Trajectory convolution for action recognition. In:
Advances in neural information processing systems. pp. 2204–2215 (2018) 3

35. Zhong, H., Liu, X., He, Y., Ma, Y., Kitani, K.: Shift-based primitives for efficient
convolutional neural networks. arXiv preprint arXiv:1809.08458 (2018) 4, 5

36. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in
videos. In: Proceedings of the European Conference on Computer Vision (ECCV).
pp. 803–818 (2018) 3, 9, 10

37. Zolfaghari, M., Singh, K., Brox, T.: Eco: Efficient convolutional network for online
video understanding. In: Proceedings of the European Conference on Computer
Vision (ECCV). pp. 695–712 (2018) 10, 11

RubiksNet: Learnable 3D-Shift for Efficient
Video Action Recognition

(Supplementary Material)

In this supplementary material, we include:

1. Additional Visualizations of our model in Section A1. We include video
visualizations in our overview video (see rubiksnet.stanford.edu).

2. Additional Architecture Details in Section A2 which provides additional
details (e.g. size classes, layout) at the network-level for our architecture.

3. Interpolated Shift Equation Details in Section A3 provides expanded
technical discussion of the 3D shift equations in the main paper.

4. Efficiency Analysis Details in Section A4 provides additional details and
breakdowns at the layer- and operation-level for our architecture to highlight
how our efficiency gains reported in the main paper are rooted in our main
proposed learnable 3D RubiksShift operations.

5. Additional Results in Section A5, including additional results for the main
benchmarks reported in the paper as well as a comparison (verifying consistent
improvement in efficiency-accuracy) on the Kinetics dataset against our
main shift-based action recognition baseline (TSM) from ICCV19.

6. Additional Training Details in Section A6 which provides additional
details (e.g. hyperparameters, learning rate schedule) for training.

7. Code release is available on the project website rubiksnet.stanford.edu.

A1 Additional Visualizations

We include additional visualizations of the learned 3D-shift weights in our sup-
plementary video. In Figure A1, we show an expansion of the layer views from
Figure 6 in the main paper, adding more views of the 3D filters from different
angles.

A2 Architecture Details

We include additional architecture details in Table A1. This table captures the ar-
chitecture layout details for RubiksNet-Large, Medium, Small, Tiny, respectively.
Across all RubiksNet architectures, we follow an overall ResNet block design
style as per prior work [16]. Our spatial shift is designed to be compatible with
transfer from 2D spatial shift pretraining [11,29]. We plan to open source our
implementation, including our PyTorch, PyTorch C++, and CUDA code. Our
RubiksNet architecture primarily relies on the shift operation and (pointwise)
convolution operation for its spatiotemporal modeling. In Sec. A4, we show our ef-
ficiency gains are rooted in our new (generic) RubiksShift Block, consisting of 3D

rubiksnet.stanford.edu
rubiksnet.stanford.edu

2 J. Fan* and S. Buch* et al.

Fig. A1: Expanded visualization of Figure 6 in the main paper, showing different
3D viewpoints of the visualized spatiotemporal RubiksShift. We include further
visualizations in our supplementary video.

learnable shift layers (between the Pointwise Conv/ReLU/BN operations). Our
novel RubiksShift operation requires no spatial or spatiotemporal convolutions
and can jointly learn spatiotemporal 3D shift.

A3 Interpolated Shift Equation Details

In this section, we provide additional discussion for our technical discussion for
interpolated 3D shift. From the main paper, Equation 5 and 6 can be expanded
as follows:

O′c,t,h,w = F̃c,t+γc,h+αc,w+βc

= Z1
c · (1−∆γc) · (1−∆αc) · (1−∆βc)

+ Z2
c ·∆γc · (1−∆αc) · (1−∆βc)

+ Z3
c · (1−∆γc) ·∆αc · (1−∆βc)

+ Z4
c ·∆γc ·∆αc · (1−∆βc)

+ Z5
c · (1−∆γc) · (1−∆αc) ·∆βc

+ Z6
c ·∆γc · (1−∆αc) ·∆βc

+ Z7
c · (1−∆γc) ·∆αc ·∆βc

+ Z8
c ·∆γc ·∆αc ·∆βc

RubiksNet (Supplementary Material) 3

Table A1: RubiksNet Architecture Table, for different size classes (Large, Medium,
Small, Tiny). As described in the main paper, these size classes are grouped to
correspond with TSM. Nc refers to the number of output classes for dataset.
Please refer to Sec. 4 for efficiency analysis on all the size classes and Sec. A4 for
lower-level efficiency analysis.

Group Type
Out Channels Repeat

Stride
L/M/S T L/M/S/T

- Input Block 72 54 1 2

1 RubiksShift Block
72 54

1 1
RubiksShift Block 1 2
RubiksShift Block 2 1

2 RubiksShift Block
144 108

1 2
RubiksShift Block 7/3/3/3 1

3 RubiksShift Block
288 216

1 2
RubiksShift Block 35/22/5/5 1

4 RubiksShift Block
576 432

1 2
RubiksShift Block 2 1

- Avg Pool - - 1 -

- FC - Nc 1 -

where F̃c,t+γc,h+αc,w+βc
is the corresponding interpolated value at position

(t, h, w) of the feature map at channel c after shift and

Z1
c = Fc,t+bγcc,h+bαcc,w+bβcc, Z

2
c = Fc,t+dγce,h+bαcc,w+bβcc,

Z3
c = Fc,t+bγcc,h+dαce,w+bβcc, Z

4
c = Fc,t+dγce,h+dαce,w+bβcc,

Z5
c = Fc,t+bγcc,h+bαcc,w+dβce, Z

6
c = Fc,t+dγce,h+bαcc,w+dβce,

Z7
c = Fc,t+bγcc,h+dαce,w+dβce, Z

8
c = Fc,t+dγce,h+dαce,w+dβce.

with b·c, d·e as denoting floor and ceiling functions, respectively. Z∗c correspond
to the eight nearest integer points around the local neighbourhood at the location
of each shift parameter. These eight points consist of a 23 cube and are used for
trilinear interpolation (evaluated locally in an efficient manner).

We can also show why Equation 6 holds by showing how each dimension
contributes to the final coefficients from a bottom-up approach (composing partial
terms along the way). To begin, we can look at the temporal dimension first. By
the definition of linear interpolation, the interpolated point which lies between
Z1
c and Z2

c is

T 1
c = Z1

c · (1−∆γc) + Z2
c ·∆γc.

Similarly, the interpolated values between {Z3
c , Z

4
c }, {Z5

c , Z
6
c } and {Z7

c , Z
8
c } are:

T 2
c = Z3

c · (1−∆γc) + Z4
c ·∆γc,

T 3
c = Z5

c · (1−∆γc) + Z6
c ·∆γc,

T 4
c = Z7

c · (1−∆γc) + Z8
c ·∆γc , respectively.

4 J. Fan* and S. Buch* et al.

Now that we have accounted for the temporal dimension contributions, we
can account for the contributions from the vertical dimension to our intermediate
values T ∗c . We have the interpolated value in between T 1

c and T 2
c as

H1
c = T 1

c · (1−∆αc) + T 2
c ·∆αc,

and the interpolated point in between T 3
c and T 4

c as

H2
c = T 3

c · (1−∆αc) + T 4
c ·∆αc.

Finally, we account for the linear interpolation for the horizontal dimension, and
get the interpolated contribution between H1

c and H2
c as

W 1
c = H1

c · (1−∆βc) +H2
c ·∆βc.

where W 1
c is the final trilinearly interpolated value. If we expand and write it

using Z∗c , it has the same form as O′c,t,h,w, recovering the product coefficients
described Equation 6.

Finally, we reiterate the point from the main paper that this equation is a for-
malism; in practice we are able to implement the whole operation in CUDA/C++
efficiently with minimal FLOPs overhead (see efficiency analysis in Sec. A4). We
also emphasize that with the budget-constrained attention shift (RubiksShift-AQ),
we can replace some or all of these dimensions (e.g. temporal) with a discrete
integer shift (described in Sec. 4 in the main paper), in which case any remaining
dimensions are interpolated with the lower-dimensional versions of Equation 6.

A4 Efficiency Analysis Details

In this section, we provide additional details and analysis of efficiency of our
models, breaking down the contribution of our 3D RubikShift block from an
operations perspective with respect to traditional 3D Convolution as well as the
recent 2D Convolution + Shift (TSM) block from ICCV 2019. We also provide
runtime analysis of our method.
FLOPs and Parameters Protocol. Our FLOP and parameter computation
procedure aligns with prior work [16] for consistency. In a RubiksShift layer, the
main contributor to the FLOP count is the 1x1 pointwise convolution layers, which
are dramatically less expensive than traditional 2D or 3D conv. The traditional
shift operation itself is considered zero-FLOP, since it can be fused into the
pointwise convolution as one GPU kernel call [29]. Learnable shift incurs small
FLOP/param cost, but otherwise similarly efficient when properly implemented.
Additional Efficiency Analysis. We visualize a full efficiency analysis break-
down of our RubiksShift layer in Figure A2, A3, and A4. For our analysis here,
we control the same input ((T,H,W) = (8, 112, 112)) and input/output
channels (input and output is fixed to 72 channels for all blocks, so that channel
count does not affect the analysis) for all calculations. Further, all blocks here
are standard blocks with consistent channels throughout the block. Figure A2

RubiksNet (Supplementary Material) 5

shows the total cost comparison; we calculate that a RubiksShift layer has ∼25x
fewer FLOPs/params in contrast with traditional 3D, and ∼8x fewer than TSM
(shift + 2D conv). Figure A3 shows the breakdown by percentage of FLOPs, and
Figure A4 shows the breakdown by percentage of parameters; each plot is shown
(a) normalized to the 3D conv block (with a “savings” section indicating the
saved relative compute) and (b) to itself. Similarly, these gains translate to our
overall RubiksNet architecture, our gains are chiefly due to the replacement of
all spatial and spatiotemporal convolutions with a learnable shift-based operation.
We note that the full RubiksNet numbers described in the main paper (which
are relatively lower, but show significant improvement) also account for all the
extra layers in the full architecture (e.g. the fully-connected layers, which are not
replaced by RubiksShift blocks).

3D Conv 2D Conv + Temporal Shift 3D Shift
0

5

10

15

20

25

FLOPs Comparison

layer type

FL
O
Ps
 (
G
)

3D Conv 2D Conv + Temporal Shift 3D Shift
0

50

100

150

200

250

Parameters Comparison

layer type

Pa
ra
m
. 
(K
)

Fig. A2: Efficiency comparison at layer level. Our RubiksShift (3D learnable shift)
layer shows a large efficiency gain over analogous 3D convolution and Shift+2D
convolution [16] prior work. See Sec. A4.

Table A2: Runtime Latency Comparison; Block types correspond with Figure
A2. See Section A4 for details.

Block Type Runtime Latency

3D Conv 7.98ms ± 0.75ms
2D Conv + Shift (TSM) [16] 3.59ms ± 0.13ms

3D Shift (Ours) 0.90ms ± 0.12ms

Runtime/Latency. We also report latency analysis in the Table A2. We bench-
mark each layer/block type for runtime on the same GPU and hardware set-up
(single GPU, Titan Xp) and averaged over 100 trials. Our input tensor in all cases
is (N,T,C,H,W) = (8, 8, 72, 56, 56) (batch size N is 8), and architecture blocks
are similarly controlled for same input/output channels as in our other efficiency
analysis breakdown. We observe that our 3D RubiksShift method has consistently
better runtime than prior work. Sec. 4 in our main paper contains shift analysis
at the architecture level, showing higher accuracy than prior fixed-shift [16] with
consistent global shift budget.

6 J. Fan* and S. Buch* et al.

ConY�3D
99.8%

BaWchNoUm�3D
0.213%

SaYingV
66.5%

ConY�2D
33.3%

BaWchNoUm�2D
0.213%

SaYingV
96.1%

PoinWZiVe�ConY
3.69%

BaWchNoUm�2D
0.2%

LeaUnable�ShifW
0.0128%

ConY�3D
99.8%

BaWchNoUm�3D
0.213%

ConY�2D
99.4%

BaWchNoUm�2D
0.637%

PoinWZiVe�ConY
94.5%

BaWchNoUm�2D
5.13%

LeaUnable�ShifW
0.328%

CRQY�3D BaWcKNRUP�3D SaYLQgV CRQY�2D
BaWcKNRUP�2D PRLQWZLVe�CRQY LeaUQabOe�SKLfW

3D Conv 3D Learnable Shift 2D Conv + Shift

(a)

(b)

Fig. A3: Breakdown of FLOPs by percentage for RubiksShift (Learnable 3D
Shift) against 3D Conv and 2D Conv+Shift [16] analogous blocks, controlling for
channel/input. (a) shows breakdown of FLOPs for all three blocks normalized to
the 3D conv block. The “savings” section indicates the saved relative compute.
(b) is normalized to itself. See Sec. A4.

A5 Additional Results

In this section, we report additional results that we were not able to include in
the main paper due to space. In particular, we provide additional results for our
four main datasets in the main paper, including our larger scale (Something-
Something-v2, Something-Something-v1) and smaller scale (UCF-101, HMDB-51)
datasets. We also report an additional comparison against our main baseline
(TSM[16]) on a fifth benchmark – the Kinetics dataset [14]. Note that we chose
to prioritize our analysis and model training in the main paper on the two
large-scale Something-Something benchmarks since both contain action classes
which require more complex temporal understanding.
Additional Results. We visualize additional results for the benchmarks in the
main paper in Figure A5, A6, A7. We observe that our RubiksShift model family
consistently improves over the TSM [16] model family from ICCV 2019 on the
efficiency-accuracy tradeoff by a significant margin across datasets.

RubiksNet (Supplementary Material) 7

ConY�3D
99.9%

BaWchNorm�3D
0.0999%

SaYingV
66.6%

ConY�2D
33.3%

BaWchNorm�2D
0.103%

SaYingV
96.1%

PoinWZiVe�ConY
3.7%

Learnable�ShifW
0.129%

BaWchNorm�2D
0.103%

ConY�3D
99.9%

BaWchNorm�3D
0.0999%

ConY�2D
99.7%

BaWchNorm�2D
0.31%

PoinWZiVe�ConY
94.1%

Learnable�ShifW
3.28%

BaWchNorm�2D
2.62%

CRQY�3D BaWcKNRUP�3D SaYLQgV CRQY�2D
BaWcKNRUP�2D PRLQWZLVe�CRQY LeaUQabOe�SKLfW

3D Conv 3D Learnable Shift 2D Conv + Shift

(a)

(b)

Fig. A4: Breakdown of parameters by percentage for RubiksShift (Learnable 3D
Shift) against 3D Conv and 2D Conv+Shift [16] analogous blocks, controlling for
channel/input. The “savings” section indicates the saved relative parameters. (a)
shows breakdown of parameters for all three blocks normalized to the 3D conv
block. (b) is normalized to itself. See Sec. A4.

Kinetics Comparison. We also provide additional comparison against the TSM
model [16] on Kinetics [14], as shown in Figure A7. We observe that we maintain
the consistent trend on this benchmark as well. We also highlight that in the high
efficiency regime (e.g. TSM-Small vs. RubiksNet-Small), we substantially increase
accuracy and efficiency by a wide margin (increase accuracy by 3.9 absolute
percentage point while reducing parameters by 3.1x and FLOPs by 2.2x).

A6 Additional Training Details

Reproducibility/Code Release. Please refer to our project website for our
low-level CUDA/C++ kernels as well as our higher-level PyTorch and PyTorch
C++ layer and architecture code. We’ve also included representative pre-trained
models with inference code pipeline and corresponding log files.

8 J. Fan* and S. Buch* et al.

Fig. A5: We report the Pareto curves for our method compared with prior work
[16], with size of the circle corresponding to the number of model parameters.
Results are reported as both 2-clip accuracy (left) and 1-clip accuracy (right).

Something-Something-(V2,V1). Representative hyperparameters for our Ru-
biksNet experiments on the Something-Something-V2 dataset in Figure 4: initial
learning rate 0.025 for batch size 64, distributed across 8 GPUs. We follow the
standard step-annealing scheme in the ResNet literature [6] and divide learning
rate by 10 at epoch 26 and 36. We apply dropout 0.3 only to the fully connected
layer. Weight decay is set to 10−4. After a warm-up period, the learning rate for
RubiksShift layers is set to a 1:100 ratio of the global learning rate for stability.
Gradient scaling factor Z in Eq. 9 is 0.1.

UCF101 and HMDB51. The set of tuneable hyperparameters on both of these
datasets is the same as with Something-Something, with similar values to the
representative set above; we follow pre-training protocol from prior work [16] on
Kinetics before fine-tuning on both of these datasets.

RubiksNet (Supplementary Material) 9

Fig. A6: We also show efficiency-accuracy comparison for Something-Something-
V1 (1-clip, top-1 accuracy as per prior work); for visual clarity among multiple
prior works we show analogous prior work models with a single point. TSM [16]
is our main prior work comparison from ICCV 2019, and is shown in blue.

Fig. A7: We also report the Pareto curves for our method compared with prior
work [16], with size of the circle corresponding to the number of model parameters.
Results are reported as 1-clip, top-1 accuracy. We highlight that in the high-
efficiency regime, Rubiks-Small is able to show large efficiency and accuracy gains
over its counterpart TSM-Small.

Kinetics. The Kinetics dataset contains 306k video clips and 400 action classes.
Please see Additional Results in our supplement (Section A5) for the results.
For training, we adopt similar protocols to our other two large-scale datasets
(Something V1 and V2) above (e.g. learning rate schedule, regularization, and
RubiksShift training) and provide consistent comparison with respect to the
TSM baseline [16].

	Paper
	References
	Supplementary

