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Abstract

Autonomous agents that perceive and interact with the world, such as home robots and self-driving
vehicles, hold great promises to a future that automates mundane tasks and improves the living
standards for billions of people. However, two major obstacles stand in our way towards this grand
goal. First, modern AI systems require huge amount of data to learn meaningful behaviors, yet
training them directly on physics robots is unscalable due to high cost and low efficiency. Second,
mobile robot platforms typically have limited onboard computing resources but demand low reaction
latency, which hinders the mass deployment of large-capacity visual models.

In this dissertation, we will explore an effective recipe towards developing algorithms and systems
that are able to train and deploy visual agents at scale. The key idea is to train the agents in rich
simulation, then overcome the sim-to-real gap, and finally deploy efficiently on edge devices with
lightweight video processing architectures.

This dissertation is organized around 4 primary components in the pipeline. First, we propose
an open-source distributed framework that provides a full-stack solution to accelerate reinforcement
learning (RL) significantly for complex robotics tasks. Second, we construct an ecologically valid
and visually realistic simulator for home robotic tasks. Third, we introduce a novel policy learning
method that achieves zero-shot generalization to unseen visual environments with large distribu-
tional shifts, which facilitates sim-to-real transfer. Finally, we design a new family of video learning
architectures that enables deep video understanding for visual agents on resource-constrained de-
vices.

We hope that the techniques and ideas presented in this dissertation will bring us one step closer
to the future where intelligent robots will become as ubiquitous as smartphones in our lives.
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Chapter 1

Introduction

1.1 Background and Motivation

Autonomous agents that perceive and interact with the world hold great promises to a future that
automates mundane tasks and improves the living standards for billions of people. Over the years,
researchers have made great progress in visual policy learning on robot platforms, from self-driving
cars [255, 217] to autopilot drones [10, 2, 150], from robot workers in warehouse [151] to robot chefs
at home [144] (Fig. 1.1). However, the dream of intelligent robots roaming everywhere is still out
of our reach. In this dissertation, we identify two major obstacles that stand in our way towards
reaching this grand goal.

First, modern AI systems require huge amount of data to learn meaningful behaviors [107, 42, 139,
142, 226, 197, 227]. Supervised computer vision problems, such as image classification [42, 182, 77]
and object detection [178, 76], have witnessed tremendous breakthroughs thanks to the large-scale
and high-quality datasets like ImageNet [42] and MS-COCO [128].

Vision-based robotics, however, do not enjoy the same luxury of real and human-annotated
datasets, because embodied agents are required to explore the environment in order to learn from
a tight vision-and-action feedback loop [194, 68, 69, 192, 140, 142]. Unfortunately, training directly
on physical robots can be very difficult. To name a few major roadblocks:

• Low efficiency [119, 248, 25, 66, 165]: the experiment iteration can be very slow, as throt-
tled by the physical control frequency and agility of the commercially available robots in lab
settings. This presents a serious bottleneck to rapidly prototyping new algorithms and tuning
hyperparameters.

• Costly setup [121, 154]: robot arms can be very expensive, sometimes exceeding hundreds
of thousands of dollars. The hefty price tag dramatically raises the barrier to entry for small-
budget researchers. Moreover, it could be potentially dangerous to let the robot freely explore

1
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the physical environment. The mechanical parts could break and incur extra monetary cost
to replace. Even worse, a nearby human observer could be injured as a result of any faulty
motions.

• Manual efforts: it takes nontrivial human efforts to set and reset the physical environment
for the agent to interact with. Limited by the lab setting and scarce human labor, the agent
will not be able to experience nearly as much diversity as the uncontrolled physical world out
there.

These factors combined preclude us from diverse exploration and large-scale experimentation
directly on physical platforms.

Second, in addition to the difficulties in training, deployment presents an equally daunting set
of challenges. The visual world is not a still image. In fact, it is a continuous, ever-changing
video stream, which is notoriously expensive to process [102, 199, 232]. To understand the events
happening around it, an agent must be able to perform video inference very efficiently [222, 127, 246,
169]. This is exacerbated by the limited computing resources on mobile robot platforms, combined
with the short latency that is required of the agent to react in real time to its surroundings [46].
These compounding difficulties greatly hinder the mass deployment of large-capacity visual models
to real robot applications.

In this dissertation, we will explore an effective recipe towards developing algorithms and systems
that are able to train and deploy visual agents at scale. The key idea is to train the agents in
rich simulation, then overcome the sim-to-real gap, and finally deploy efficiently on edge devices
with lightweight video processing architectures. This dissertation is organized around 4 primary
components in the pipeline.

First, we propose an open-source distributed framework [208, 52] that provides a full-stack solu-
tion to accelerate reinforcement learning (RL) significantly for complex robotics tasks. Second, we
construct an ecologically valid and visually realistic simulator for home robotic tasks [195, 241, 243].
Training in simulation enables us to sidestep all the difficulties of learning directly on physical robots:

• High efficiency and scalability [148, 9, 34, 85, 49, 124, 123]: armed with the distributed
RL framework, we are able to massively scale up training on modern cloud platforms. The
throughput we can achieve in simulation is equivalent to days of real world interaction in a
matter of seconds. This high volume of experience satisfies the data hunger of the state-of-
the-art deep RL algorithms. We demonstrate significant advancements in the performance of
our simulated robots.

• Safe exploration: thanks to the fully simulated environments, we no longer have the issue
of dangerous exploration in the physical world. The robot agents can freely carry out experi-
mentation of novel behaviors, supported by the high-fidelity physics engine in the simulator.
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Figure 1.1: Autonomous visual agents are playing increasingly important roles in our lives. In clock-
wise order: Tesla Autopilot [217], Jetson autonomous drone [150], Moley robotic kitchen demonstra-
tion [144], and IsaacSim robotic warehouse workers [151].

• Diverse experience [195, 105, 188, 189, 60]: we control every aspect of the simulation,
which means that we can add novel scenes, objects, appearances, and interaction modes at
scale. These variations greatly contribute to the diversity of experience that the embodied
agent receives, which gives rise to enormous improvements in the learning performance. Such
variety would not have been easily achieveable in the physical world due to budget and space
constraints.

Third, we introduce a novel policy learning method [51] that achieves zero-shot generalization
to unseen visual environments with large distributional shifts. This step enables the agent trained
purely in simulation to adapt to the real world rapidly and robustly [72, 218]. Finally, we design a
new family of video learning architectures [50] that pushes forward the Pareto frontier of efficiency
and accuracy, which unlocks deep video understanding [127, 222, 169, 246] for visual agents on
resource-constrained devices.

We hope that the techniques and ideas presented in this dissertation will bring us one step closer
to the future where intelligent robots will become as ubiquitous as smartphones in our lives.
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Figure 1.2: Overview of our proposed recipe for training and deploying visual agents at scale. Each
chapter in this dissertation represents a key component in the pipeline, which we hope will bring us
closer to the goal of deploying intelligent robots in every aspect of our lives.

1.2 Thesis Outline

Based on the proposed recipe of training and deploying visual agents at scale, we present an outline
of this dissertation (Figure 1.2):

Chapter 2 introduces Surreal [208], an open-source scalable framework that supports state-
of-the-art distributed reinforcement learning algorithms. Reproducibility has been a significant
challenge in deep reinforcement learning and robotics research. Open-source frameworks and stan-
dardized benchmarks can serve an integral role in rigorous evaluation and reproducible research.
Surreal represents a major effort in this direction. We design a principled distributed learning
formulation that accommodates both on-policy and off-policy learning. We demonstrate that Sur-
real algorithms outperform existing open-source implementations in both agent performance and
learning efficiency.

Chapter 3 takes a deeper dive into the system design aspect of Surreal [52], which powers
the framework’s high performance and massive scalability. Surreal-System consists of a stack of
four layers: Provisioner, Orchestrator, Protocol, and Algorithms. The Provisioner abstracts away
the machine hardware and node pools across different cloud providers. The Orchestrator provides a
unified interface for scheduling and deploying distributed algorithms by high-level description, which
is capable of deploying to a wide range of hardware from a personal laptop to full-fledged cloud
clusters. The Protocol provides network communication primitives optimized for RL. Finally, the
Surreal algorithms, such as Proximal Policy Optimization (PPO) [194] and Evolution Strategies
(ES) [186], can easily scale to 1000s of CPU cores and 100s of GPUs. The learning performances of
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our distributed algorithms establish new state-of-the-art on OpenAI Gym [15] and Robotics Suites
tasks [208].

Chapter 4 presents iGibson 1.0 [195], a novel simulation environment to develop robotic solutions
for interactive tasks in large-scale realistic scenes. Our environment contains 15 fully interactive
home-sized scenes with 108 rooms populated with rigid and articulated objects. The scenes are
replicas of real-world homes, with distribution and the layout of objects aligned to those of the real
world. iGibson 1.0 integrates several key features to facilitate the study of interactive tasks: (1)
generation of high-quality virtual sensor signals (RGB, depth, segmentation, LiDAR, flow and so on),
(2) domain randomization to change the materials of the objects (both visual and physical) and/or
their shapes, (3) integrated sampling-based motion planners to generate collision-free trajectories
for robot bases and arms, and (4) intuitive human-iGibson interface that enables efficient collection
of human demonstrations. Through experiments, we show that the full interactivity of the scenes
enables agents to learn useful visual representations that accelerate the training of downstream
manipulation tasks. We also show that iGibson features enable the generalization of navigation
agents, and that the human-iGibson interface and integrated motion planners facilitate efficient
imitation learning of human demonstrated (mobile) manipulation behaviors.

Chapter 5 proposes Secant [51], a novel algorithm that facilitates sim-to-real transfer. Gener-
alization has been a long-standing challenge for reinforcement learning (RL). Visual RL, in partic-
ular, can be easily distracted by irrelevant factors in high-dimensional observation space. In this
chapter, we consider robust policy learning which targets zero-shot generalization to unseen visual
environments with large distributional shift. Secant is a novel self-expert cloning technique that
leverages image augmentation in two stages to decouple robust representation learning from policy
optimization. Specifically, an expert policy is first trained by RL from scratch with weak augmen-
tations. A student network then learns to mimic the expert policy by supervised learning with
strong augmentations, making its representation more robust against visual variations compared to
the expert. Extensive experiments demonstrate that Secant significantly advances the state of the
art in zero-shot generalization across 4 challenging domains: Deepmind Control [214], autonomous
driving under diverse weathers [46], robotic manipulation in distracting scenarios [266], and indoor
object navigation in rooms with novel layouts and interior decorations [195].

Chapter 6 discusses RubiksNet [50], an efficient video inference architecture that unlocks deep
temporal understanding on mobile robot platforms. Video recognition is a complex task dependent
on modeling spatial and temporal context. Standard approaches rely on 2D or 3D convolutions
to process such context, resulting in expensive operations with millions of parameters. Recent
efficient architectures leverage a channel-wise shift-based primitive as a replacement for temporal
convolutions, but remain bottlenecked by spatial convolution operations to maintain strong accuracy
and a fixed-shift scheme [127, 238, 261]. Naively extending such developments to a 3D setting
is a difficult, intractable goal. To this end, we propose RubiksNet, based on a novel learnable
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3D spatiotemporal shift operation instead. We analyze the suitability of our new primitive for
video action recognition and explore several novel variations of our approach to enable stronger
representational flexibility while maintaining an efficient design. We benchmark our approach on
several standard video recognition datasets, and observe that our method achieves comparable or
better accuracy than prior work on efficient video action recognition at a fraction of the runtime
latency and memory footprint. We also perform a series of controlled ablation studies to verify our
significant boost in the efficiency-accuracy tradeoff curve is rooted in the core contributions of our
RubiksNet architecture.

Finally, chapter 7 provides a summary of the key ideas explored in this dissertation, and discusses
promising future ideas for scaling up visual robot learning even further.



Chapter 2

Scalable Distributed Training for
Visual Agents

2.1 Introduction

Reinforcement learning (RL) has been an established framework in robotics to learn controllers via
trial and error [104]. Classic reinforcement learning literature in robotics has largely relied on hand-
crafted features and shallow models [164, 163]. The recent success of deep neural networks in learning
representations [112] has incentivized researchers to use them as powerful function approximators to
tackle more complex control problems, giving rise to deep reinforcement learning [142, 126]. Prior
work has explored the potentials of using deep RL for robot manipulation [119, 248]. Recently we
have witnessed an increasing number of successful demonstrations of deep RL in simulated environ-
ments [183, 265, 161] and on real hardware [25, 66].

However, the challenges of reproducibility and replicability in deep RL have impaired research
progress [79]. Today’s deep RL research has not been as accessible as it should be. Reproducing
and validating published results is rarely straightforward, as it can be affected by numerous factors
such as hyperparameter choices, initializations, and environment stochasticity, especially in absence
of open-source code releases. Furthermore, owing to the data-hungry nature of deep RL algorithms,
we have observed a rising number of state-of-the-art results being achieved by highly sophisticated
distributed learning systems [197, 85, 49]. The heavy engineering factor in cutting-edge deep RL
research has increased the barrier of entry even more for new researchers and small labs.

Meanwhile, benchmarking and reproducibility of robotics research have also been a long-standing
challenge in the robotics community [41, 131]. Attempts to improve this situation include annual
robotic competitions [7, 37] and standardized object sets [19]. However, designing robotic bench-
marks that can be both standardized and widely accessible remains to be an open problem.

7
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To further complicate the situation, many deep RL papers do not open-source their codebases.
Devil is in the details of RL implementation, because seemingly small changes can lead to dramatic
degradation of performance. The absence of official code releases leads to a dichotomy between
impressive results reported in published papers and the frustration of using DRL even in toy-sized
problems. Although more than a thousand deep RL repositories exist on Github, very few comes with
adequate documentation or even a single learning curve, let alone systematic rigorous evaluations.

Many fields of AI, e.g., computer vision, have made significant progress powered by open-source
software tools [97, 1, 158] and standardized benchmarks [182]. To sustain and facilitate the re-
search of deep RL in robotics, we envision that it is vital to provide a flexible framework for rapid
development of new algorithms and a standardized robotics benchmark for rigorous evaluation.

In this paper, we introduce the open-source framework Surreal (Scalable Robotic REinforcement-
learning ALgorithms). Standard approaches to accelerating deep RL training focus on parallelizing
the gradient computation [140, 166]. Surreal decomposes a distributed RL algorithm into four
components: generation of experience (actors), storage of experience (buffer), updating parame-
ters from experience (learner), and storage of parameters (parameter server). This decoupling of
data generation and learning eliminates the need of global synchronization and improves scalability.
Surreal offers an umbrella support to distributed variants of both on-policy and off-policy RL
algorithms. To enable scalable learning, we develop a four-layer computing infrastructure on which
RL experiments can be easily orchestrated and managed. The system can be deployed effortlessly
on commercial cloud providers or personal computers. Thanks to the layered design, our system can
be fully replicated from scratch, which also contributes to the reproducibility of our experiments.

Furthermore, we introduce Surreal Robotics Suite, a diverse set of physics engine-based robotic
manipulation tasks, as an accessible benchmark for evaluating RL algorithms. Simulated systems
have been traditionally used as a debugging tool in robotics to perform mental rehearsal prior to
real-world execution [104]. A series of successful attempts have been made in utilizing simulated
data for learning robot controllers [183, 265, 161, 92, 218]. We expect the simulation-reality gap to
be further narrowed with more advanced simulation design and policy transfer techniques. We hope
that this standardized benchmark, along with the open-source Surreal codebase, will accelerate
future research in closing the reality gap.

To this end, we develop well performing and distributed variants of PPO [194] and DDPG [126],
called Surreal-PPO and Surreal-DDPG. We examine them in six of the Robotics Suite tasks
with single-arm and bimanual robots. We report performance in various setups, including training
on physical states or raw pixels, RL from scratch or aided by VR-based human demonstrations.
We also quantify the scalability of distributed RL framework compared to popular open-source RL
implementations [71, 45] in OpenAI Gym environments [15], the de facto standard continuous RL
benchmark. The experiments show that Surreal algorithms are able to achieve strong results and
high scalability with increased numbers of parallel actors.
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Figure 2.1: Surreal is an open-source framework that facilitates reproducible deep reinforcement
learning (RL) research for robot manipulation. We implement scalable reinforcement learning meth-
ods that can learn from parallel copies of physical simulation. We also develop Robotics Suite as an
accessible benchmark for evaluating the RL agents’ performances.

2.2 Related Work

2.2.1 Deep Reinforcement Learning in Robotics

Deep RL methods have been applied to mobile robot navigation [264, 157] and robot arm ma-
nipulation [119, 248, 25, 66, 165]. Both model-based and model-free RL approaches have been
studied. Model-based methods [119, 248, 147] often enjoy sample efficiency of learning, but pose
significant challenges of generalization due to their strong model assumptions. Model-free meth-
ods [265, 25, 66, 165] are more flexible, but usually require large quantity of data. In this work,
we build a distributed learning framework to offer a unified support of two families of model-free
continuous RL methods: value-based methods based on deterministic policy gradients [126] and
trust-region methods [192, 78, 194]. Our focus on developing model-free RL methods and building
simulated robotic benchmarks is encouraged by a series of recent progress on simulation-to-reality
policy transfer techniques [183, 265, 161, 92, 218].

2.2.2 Distributed Deep RL Frameworks

As the learning community tackles problems of growing sizes and wider varieties, distributed learning
systems have played an integral role in scaling up today’s learning algorithms to unprecedented
scales [197, 40]. The high sample complexity and exploration challenge in deep RL have accentuated
the advantages of distributed RL frameworks. Prior approaches have relied on asynchronous SGD-
style learning (e.g., A3C [140], Gorila [148], ADPG-R [166]), batched data collection for high GPU
throughput (e.g., batched A2C [34], GA3C [9], BatchPPO [71]), and more recently, multiple CPU
actors for experience generation and single GPU learner for model update (e.g., Ape-X [85] and
IMPALA [49]).
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Surreal differs from asynchronous gradient methods like A3C, because the latter shares gra-
dients between decentralized learners instead of sending experience, which is less desirable because
gradients become outdated more rapidly than experience data. To date, Ape-X and IMPALA
have reported state-of-the-art results with off-policy RL in several benchmarks. Surreal resem-
bles these two methods, which also separate experience generation from centralized learning. The
major difference is that Surreal provides a unified approach towards both on-policy trust region
algorithms [194, 78] and off-policy value-based algorithms [126, 198].

2.2.3 Benchmarking Robotics and RL Research.

Both robotics and deep reinforcement learning communities have confronted with significant chal-
lenges of benchmarking and reproducibility. In robotics replicability and reproducibility has been
a long-standing challenge [41, 131]. Attempts to improving this situation include annual robotic
competitions [7, 37] and standardized object sets [19]. However, designing robotic benchmarks that
can be both standardized and widely accessible remains to be an open problem. The deep RL com-
munity has been also faced with the same challenge of reproducibility [79], which hinders research
progress and technology transfer.

2.3 Surreal Distributed Reinforcement Learning Framework

Surreal’s goal is to provide highly scalable implementations of distributed RL algorithms for
continuous control. We develop distributed variants of the on-policy PPO [194] and off-policy
DPG [126] algorithms, and unify them under a single algorithmic framework. We further develop a
distributed computing infrastructure that can be easily replicated and deployed. Here we start with
a brief review of the basics of the PPO and DPG algorithms.

2.3.1 Proximal Policy Gradient

Policy gradient algorithms [211] are among the most robust methods for continuous control. They
aim to directly maximize the expected sum of rewards J(θ) = Eτθ

[∑
t γ

t−1r(st, at)
]

with respect to
the parameters θ of the stochastic policy πθ(a|s). The expectation is taken over τθ, which denotes the
trajectories induced by πθ interacting with the environment. The vanilla policy gradient estimator
is given by ∇θJPG = Eτθ [

∑
t∇θ log πθ(at|st)At]. At is the advantage function, typically formulated

as subtracting a value function baseline from the cumulative reward, Rt − V (st).
Policy gradient estimates can have high variance (e.g. [47]). One effective remedy is to use a trust

region to constrain the extent to which any update is allowed to change the policy. [163, 192, 236].
Trust Region Policy Optimization (TRPO; [192]) is one such approach that enforces a hard constraint
on the Kullback-Leibler (KL) divergence between the old and new policies. It optimizes for a
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surrogate loss as the following:

JTRPO(θ) = Eτθold

[∑
t

πθ(at|st)
πθold(at|st)

At

]
subject to KL [πθold |πθ] < δ

More recently, Proximal Policy Optimization (PPO) has been proposed as a simple and scalable
approximation to TRPO. PPO only relies on first-order gradients and can be easily combined with
recurrent neural networks (RNN) in a distributed setting. PPO implements an approximate trust
region via a KL-divergence regularization term, the strength of which is adjusted dynamically de-
pending on actual change in the policy in past iterations. PPO optimizes an alternative surrogate
loss JPPO(θ) = Eτθold

[∑
t

πθ(at|st)
πθold (at|st)At − λ ·KL[πold|πθ]

]
, where λ is adjusted if the actual KL falls

out of a target range. There are other flavors of PPO, but we only use the adaptive-KL version in
this paper.

2.3.2 Deterministic Policy Gradient

Policies may also be induced by maximizing an estimate of expected cumulative reward [209, 210].
The action value function Qπ(s, a) = E [Rt|s, a] can be learned by the Bellman equation [211],
which relates the value of a state-action pair (s, a) to the value of subsequent state-action pairs:
Qπ(s, a) = r + γEs′,a′ [Qπ(s′, a′)] .

Given a discrete action space, a greedy policy can be used to select the action associated with the
highest Q value, which is performed by Deep Q Network (DQN) [142]. In continuous action space,
however, it is difficult to find an analytical expression for the value-maximizing action. Actor-critic
method solves the problem by training a policy, known as the “actor”, to maximize the estimated
expected return computed by a value function, known as the “critic”. The deterministic policy
gradient theorem [198] shows how to update the policy: ∇θJDPG = Eτθ

[
∇aQπ(s, a)|a=π(s)∇θπθ(s)

]
.

For a large state space like image observation, both the actor and the critic can be defined by
deep neural networks. This variant is correspondingly called Deep Deterministic Policy Gradient
(DDPG) [126]. Because DDPG is an off-policy method, we can use the experience replay technique
to store past experiences and sample them in batches to update the deep neural networks.

2.3.3 Surreal Distributed RL Design

The distributed RL formulation in Surreal consists of four major components illustrated in Fig. 2.2:
actors, buffer, learner, and parameter server. Our key idea is to separate experience generation
from learning. Parallel actors generate massive amount of experiences in the form of state-action
transition tuples (st, at, st+1, rt), while a centralized learner performs model updates. Each actor
explores independently, which allows them to diversify the collectively-encountered state spaces.
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Figure 2.2: The Surreal distributed components consists of actors, buffer, learner, and parameter
server. The red arrows denote experience data flow and the blue arrows denote neural network
parameter flow. All components report learning and system statistics to the cluster manager.

This alleviates the exploration challenge in long-horizon robotic manipulation tasks. The centralized
learning eliminates global locking and reduces implementation complexity. Based on these design
principles, we develop distributed versions of PPO and DDPG algorithms, which we will refer to as
Surreal-PPO and Surreal-DDPG (pseudocode in Appendix).

On-policy and off-policy deep RL methods employ two different mechanisms of consuming expe-
riences for learning. We introduce a centralized buffer structure to support both. In the on-policy
case, the buffer is a FIFO queue that holds experience tuples in a sequential ordering and discards
experiences right after the model updates. In the off-policy case, the buffer becomes a fixed-size re-
play memory [142] that uniformly samples batches of data upon request to allow experience reusing.
The buffer can be sharded on multiple nodes to increase networking capacity.

The learner continuously pulls batches of experiences from the buffer and performs algorithm-
specific parameter updates. Because learning is centralized, it can take advantage of multi-GPU
parallelism. Periodically, the learner posts the latest parameters to the parameter server, which
then broadcasts to all actors to update their behavior policies.

Due to our design’s asynchronous nature and inevitable network latency, the actors’ behavior
policies that generate the experience trajectories can lag behind the learner’s policy by several
updates at the time of gradient computation. This would cause harmful off-policyness for on-policy
methods. IMPALA [49] addresses this discrepancy by using a correction technique called V-trace. We
propose a simpler alternative. Surreal-PPO learner keeps a target network that is broadcasted to
all actors at a lower frequency. This ensures that a much larger portion of the experience trajectories
are on-policy, except for those generated within the policy lag (i.e. system delay between parameter
server broadcasting target network parameters, to actors actually updating the behavior policy to
the target network). Empirically, we find that the target network mechanism balances the trade-off
between learning speed and algorithmic stability, which is crucial for agent performance.
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Figure 2.3: Surreal reproducible and scalable learning infrastructure. The four layers from left to
right are increasingly abstracted away from the hardware.

2.3.4 Surreal Heterogeneous Computing Infrastructure

Distributed RL, unlike data parallelism commonly used in supervised learning, requires complex
communication patterns between heterogeneous components as seen in Fig. 2.2. This has increased
the burden of engineering in distributed RL research. Our goal is to open source a set of well-
engineered computing infrastructure that makes the runtime setup effortless to upper-level algorithm
designers, with reproducibility and scalability as our guiding principles.

We design a four-layer distributed learning pipeline shown above, which decouples the RL algo-
rithms from the underlying infrastructure (Fig. 2.3). Surreal pipeline starts with the provisioner
that guarantees the reproducibility of our cluster setup across Google Cloud, AWS, and Azure.
The next layer, orchestrator, uses a well-established cloud API (Kubernetes) to allocate CPU/GPU
resources and replicate the networking topology of our experiments. We use docker images to en-
sure that the runtime environment and dependencies can be exactly reproduced. Further down
the pipeline, the protocol implements efficient communication directives. Some components can be
sharded and load-balanced across multiple nodes to boost performance even further. We implement
our algorithms in PyTorch [158] with benefits of fast prototyping and dynamic computation graphs.

Among open-source distributed RL libraries, TensorFlow-Agent [71], OpenAI Baselines [45], and
GA3C [9] provide very limited support for multi-node training, while Surreal can easily scale to
hundreds of CPUs and GPUs. Ray [146] is one of the systems that natively feature multi-node
training. It has preliminary support for cloud, but only applies to AWS and does not automate
cluster setup in a systematic manner as we do.

2.4 Robotics Suite: Simulated Robot Manipulation Bench-
mark

We aim to build a standardized and widely accessible benchmark with high-quality physical simula-
tion, motivated by a series of recent work on leveraging simulated data for robot learning [183, 265,
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Figure 2.4: Six robot benchmarking environments. The first row shows initial configurations and
the second row shows the states of task completion. When trained on raw pixel inputs, the agents
take the RGB observations from the same cameras as illustrated in the second row.

92]. We develop the Robotics Suite in the MuJoCo physics engine [220], which simulates fast with
multi-joint contact dynamics. It has been a favorable choice adopted by existing continuous control
benchmarks [15, 213]. We provide OpenAI gym-style interfaces [15] in Python with detailed API
documentations, along with tutorials on how to import new robots and create new environments
and new tasks. We highlight four primary features in our suite:

1. Procedural generation (Fig. 2.1): we provide a modularized API to programmtically gener-
ate combinations of robot models, arenas, and parameterized 3D objects, enabling us to train
policies with better robustness and generalization

2. Control modes: we support joint velocity controllers and position controllers to command
the robots

3. Multi-modal sensors: we support heterogeneous types of sensory signals, including low-level
physical states, RGB cameras, depth maps, and proprioception

4. Teleoperation: we support using 3D motion devices, such as VR controllers, to teleoperate
the robots and collect human demonstrations.

Our current release of the benchmark consists of six manipulation tasks as illustrated in Fig. 2.4.
All six environments are simulated at 10Hz control rate. The robots are controlled via joint velocity.
There are three types of observations: proprioceptive features, object features, and camera obser-
vations. Proprioceptive features contain cos and sin of robot joint positions, robot joint velocities
and current configuration of the gripper. Object features contain environment-specific values that
describe the states and relationships of objects of interest. Camera observations are 84 × 84 RGB
images.
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We plan to keep expanding the benchmark with additional tasks, new robot models, and more
advanced physics and graphics engines.

1. Block Lifting: A cube is placed on the tabletop. The Sawyer robot is rewarded for lifting
the cube with a parallel-jaw gripper. We randomize the size and the placement of the cube.

2. Block Stacking: A red cube and a green cube are placed on the tabletop. The Sawyer robot
is rewarded for lifting the red cube with a parallel-jaw gripper and stack it on top of the green
cube.

3. Bimanual Peg-in-hole: The Baxter robot holds a board with a squared hole in the center
in its right hand, and a long stick in the left hand. The goal is to move both arms to insert
the peg into the hole.

4. Bimanual Lifting: A pot with two handles is placed on the tabletop. The Baxter robot is
rewarded for lifting the pot above the table by a threshold while not tilting the pot over 30
degrees. Thus the robot has to coordinate its two hands to grasp the handles and balance the
pot.

5. Bin Picking: The Sawyer robot tackles a pick-and-place task, where the goal is to pick four
objects from each category in a bin and to place them into their corresponding containers.

6. Nut-and-peg Assembly: Two colored pegs are mounted to the tabletop. The Sawyer robot
needs to declutter the nuts lying on top of each other and assembles them onto their corre-
sponding pegs.

Our rationale of designing these tasks is to offer single-arm and bimanual manipulation tasks
of large diversity and varying complexity. The complexity of a task is measured by the estimated
number of steps an optimal agent can solve it and from the mean and variance of the time required
by an experienced human operator using teleoperation routines that interface with a virtual reality
controller. These mean episode durations from the successful human demonstrations — taken to be
a proxy for task difficulty — are shown in Fig. 2.5. We infer that the Nut-and-peg Assembly and
Bin Picking tasks are the hardest, whereas the Block Lifting and Block Stacking tasks are relatively
easier. These human demonstrations were also used by our RL algorithms to accelerate exploration,
as explained in Sec. 2.5.3. In the next section, we provide quantitative evaluations of Surreal
algorithms on these benchmarking tasks.

2.5 Experiments

We evaluate our Surreal distributed RL algorithms in all six benchmarking tasks introduced in
Sec. 2.4. For each task, we train RL agents with Surreal-PPO and Surreal-DDPG algorithms
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on two settings: ground-truth physical states and raw pixel observations. In the former case, we
use low-dimensional object features (object positions, rotations, etc.) and proprioceptive features
(robot joint positions and velocities) as input. In the latter case, we use RGB camera observations
and proprioceptive features, which are usually available on real robots.

In next two sections, we provide more details on the training algorithm setup.

2.5.1 Surreal-PPO Details

When training with pixel inputs, an 84 × 84 × 3 RGB image is fed into a convolutional neural
network (CNN) feature extractor. The extractor consists of an 8× 8 convolution with 16 filters and
stride 4, followed by a 4 × 4 convolution with 32 filters and stride 2, with ReLU activations. The
convolution outputs are flattened and passed into a linear layer of size 256, which is concatenated
to the proprioceptive inputs. The concatenated feature is fed into a 1-layer long short-term memory
(LSTM) network with cell size 100. The LSTM output is fed into two separate feedforward networks
for actor and critic. Both feedforward networks have hidden layers of size 300 and 200. The actor
network outputs an action mean and log of standard deviation for each action dimension, whereas the
critic network outputs a scalar. The actions are sampled with action mean and standard deviation
kept by the actor network before feeding back to the environment.

To compute the loss, we first compute advantage for each timestep using generalized advantage
estimate (GAE) [193]. We find the adaptive KL variant of PPO [194] to be more stable. In the
distributed setting, when the learner publishes its parameters, agents may still be doing rollouts
using an outdated set of parameters. This communication latency makes the algorithm not strictly
on-policy, leading to divergent behaviors. In Surreal-PPO learner, a set of target network pa-
rameters is kept along side of a set of updated model parameters. The target model parameters are
broadcasted to the actors at a lower frequency to stabilize learning.

We use the number of model update steps before broadcasting to measure the target network
update frequency: more model update steps correspond to a lower frequency. One way to interpret
the reference target model is that it maintains a fixed center of the trust region. The learner is
encouraged to optimize policy within the trust region since the adaptive KL-penalty variant of PPO
penalizes excess KL-divergence. We also find that normalizing the low-dimensional states with a
running estimate of mean and variance (z-filtering) helps stability and convergence for Surreal-
PPO.

2.5.2 Surreal-DDPG Details

When training with pixels, we stack the most recent 3 camera observations as input to the DDPG
model. The stacked images are then fed through an 8 × 8 convolution with 16 filters and stride 4,
followed by a 4× 4 convolution with 32 filters and stride 2, with ReLU activations. The convolution
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Figure 2.5: We report training curves of our Surreal-DDPG and Surreal-PPO on six Sur-
real Robotics Suites tasks. The training curve represents the mean with standard deviation as the
translucent band. We train the agents on both ground-truth physical states and raw pixel observa-
tions. We measure the complexity of the tasks as the median completion time by an experienced
human operator using VR controllers to teleoperate the robots using APIs in Robotics Suite.

filter parameters are shared between the actor and critic networks. For the purpose of gradient
updates, the convolution parameters are updated only by gradient descent on the critic loss.

Each actor explores using Ornstein-Uhlenbeck noise. Each actor is assigned an exploration noise
σ parameter that remains constant over the course of training, where σ is scaled linearly between a
minimum of 0 and a maximum of 1.0 across the actors.

For the Robotics Suite experiments, we find them to be more sensitive to layer normalization
than the Gym environments. Bimanual Peg-in-hole experiments are run with layer normalization,
6-step rewards, no weight decay, and a maximum σ value of 1.0. Block lifting experiments use no
layer normalization, 3-step rewards, weight decay of 0.0001, and a maximum σ value of 2.0.

2.5.3 Performances: Robotics Suite

Fig. 2.5 shows learning curves of our Surreal-DDPG and Surreal-PPO implementations on
six Robotics Suite environments. We notice that Surreal-PPO is able to converge to policies
with lower standard deviations than Surreal-DDPG. This is because Surreal-PPO adjusts
its exploration noise standard deviation throughout training, whereas Surreal-DDPG uses fixed
exploration noise. This is also reflected by the fact that the mean reward of Surreal-PPO varies
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Figure 2.6: Sample immediate reward trajectories for successful task completions, collected using
robot teleoperation facilities.

more smoothly than that of Surreal-DDPG.
Block Lifting and Bimanual Peg-in-hole are the easiest tasks that consist of a single stage. Both

algorithms can solve the tasks with policies trained on both input modalities. We notice that training
time for Block Lifting is longer than Bimanual Peg-in-hole even though these two tasks are similar in
complexity measured by median human completion time illustrated in Fig. 2.5. We hypothesize that
this is caused by random initialization of object size in addition to position and orientation. Thus,
convergence of training indicates that our algorithms can find robust solutions capable of adapting
to environment variations.

The tasks of Block Stacking (grasping, lifting, and stacking) and Bimanual Lifting (grasping
handles and lifting the pot) have longer horizons. Our algorithms can solve subtasks and achieve
intermediate rewards: in the Bimanual Lifting task, actors learn to place the grippers on the handles
but not to lift. We hypothesize that we need better exploration strategies to solve these tasks.
Following [265], we build a curriculum from human demonstration to assist exploration. With
some probability α, we initialize episodes with states taken along successful trajectories from the
demonstrations (Fig. 2.6).

We experiment with three different curricula: in the “uniform” case the state is chosen uniformly
at random from the entire demonstration dataset; “forward” samples states from the beginning
of demonstration trajectories with a slowly growing window; “reverse” samples from the end of
trajectories instead. Fig. 2.7 shows training results for Bimanual Lifting (states) with these curricula,
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Figure 2.7: PPO agent trained on state
for the Bimanual Lifting task with different
types of demonstration curricula.

Figure 2.8: Training curves with 16 actors: our
Surreal algorithms and baselines on OpenAI
Gym HalfCheetah and Hopper environments.

using 64 actors. We see that with proper strategies, Surreal-PPO is able to complete the full task,
which is previously only partially solved.

Bin Picking and Nut-and-peg Assembly are intrinsically more difficult because they have long
horizons and multiple stages. As indicated in Fig. 2.5, they take the longest time to complete for
humans. RL agents are able to perform a specific subtask but unable to proceed. In the Bin Picking
task, for example, the PPO agents are able to successfully pick up, move, and drop at most one out
of the four items. We believe solving these tasks is beyond the scope of our current algorithms.

2.5.4 Performances: OpenAI Gym

To put the performances of our distributed RL implementations in context, we run Surreal on
de facto continuous RL benchmark environments used in previous work [79, 47]. We compare with
OpenAI Baselines DDPG [45] and TensorFlow Agent BatchPPO [71], which are among the popular
open-source distributed reference implementations. Fig. 2.8a compares the learning curves of our
DDPG and PPO implementations against the baselines on wall-clock time. All algorithms are
trained with 16 actors with the same hardware allocation. Except for OpenAI-DDPG that does not
support GPU out of the box, all other experiments use a single Nvidia P100 GPU for the learner.

Our algorithms outperform all baselines on HalfCheetah by a large margin and perform on a
comparable level as BatchPPO on Hopper. We hypothesize that the differences in both algorithmic
and system design contribute to the performance gap. BatchPPO distribute the experience gener-
ation by producing a batch of actions synchronously, which would be bottlenecked by the slowest
simulation. OpenAI-DDPG collects gradients in a synchronous fashion, which is not as desirable as
communicating experiences asynchronously (see Sec. 2.3.3).
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Figure 2.11: Learning curves for Surreal-PPO and Surreal-DDPG trained on the block lifting
and bimanual peg-in-hole tasks with raw pixel inputs using different number of actors, ranging from
1, 4, 16, 64. Both algorithms learn sizeably faster with more actor experience throughput.

2.5.5 Scalability

Fig. 2.9 shows our system characteristics on Robotics Suite (training on pixels) and Gym environ-
ments (training on states). The total actor throughput is number of environment frames collected
by all actors per second. Our Buffer is sharded and load-balanced to reduce network congestion,
which yields an almost linear speedup with respect to the number of actors. The scalability of our
algorithms becomes more remarkable in our tasks, where complex dynamics and graphical rendering
makes simulation slower than OpenAI Gym by an order of magnitude .

We evaluate the scalability of our methods with respect to varying numbers of actors. Fig. 2.10
shows episode rewards on Gym HalfCheetah and Hopper environments. Both our methods and
the baselines are trained for 3 hours using 1, 4, 16 and 64 actors with the same hardware resource
allocation. Our methods generally obtain better performance with growing number of actors, and
score higher than the baselines across all actor settings. Surreal-PPO is on-policy and uses every
experience once; its learner speed is bound by total actor throughput until the learner machine
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capacity is saturated. Thus increasing the number of actors speeds up the learner, as demonstrated
by the monotonically increasing curves in Fig. 2.10. In contrast, the DDPG learner samples from
a replay buffer and reuses experiences; its speed is not directly correlated with the total actor
throughput. If a small number of actors is enough to explore the environment extensively, the
learner can still learn at the maximal possible speed. This is the case for Gym environments where
simulation is fast. Surreal-DDPG achieves the maximum score with as few as 1 or 4 actors.

In comparison, on Robotics tasks with slower simulation, a large number of actors is needed for
both Surreal-PPO and Surreal-DDPG to learn; they show better performance when trained
with more actors. Fig. 2.11 compares the learning curves of our DDPG and PPO on Block Lifting
and Bimanual Peg-in-hole with pixel inputs. Training with 64 actors results in faster learning and
better final performance. We hypothesize that, given fewer actors (especially 1 and 4 actors), both
DDPG and PPO suffer from inadequate exploration, which causes them to learn much slower or
become trapped at sub-optimal policies.

2.6 Conclusion

We address the challenge of reproducibility and benchmarking in deep reinforcement learning and
robot manipulation research. We introduce Surreal, a highly-scalable distributed framework that
supports on-policy and off-policy deep RL algorithms. We develop a novel system infrastructure
to enable reproducibility and extensibility. To rigorously evaluate the performance of the RL algo-
rithms, we introduce Robotics Suite, which contains a set of manipulation tasks with varying levels
of complexity. We illustrate that our distributed RL algorithms outperform widely used RL libraries
on standard benchmarks, and perform well in manipulation tasks in our new benchmark.

In the future, we plan to expand Surreal with new algorithms and enrich the benchmark with
new tasks. We hope Surreal will become a valuable resource for a broad range of manipulation
related research, as a training resource, a standardized benchmark, and a framework for rapid
algorithm development.



Chapter 3

System Design for Massively
Parallel Reinforcement Learning

3.1 Introduction

Distributed systems development is becoming increasingly important in the field of deep learning.
Prior work has demonstrated the value of distributing computation to train deep networks with
millions of parameters on large, diverse datasets [40, 62, 146]. Distributed learning systems have
recently witnessed a great deal of success across a wide variety of games, tasks, and domains [40,
197, 62, 124, 85, 49]. In particular, distributed Reinforcement Learning (RL) has demonstrated
impressive state-of-the-art results across several sequential decision making problems such as video
games and continuous control tasks.

Three important design paradigms are desired for distributed reinforcement learning systems:
reproducibility, flexibility, and scalability. Reproducing and validating prior deep reinforcement
learning results is rarely straightforward, as it can be affected by numerous factors in the tasks and
the underlying hardware. It makes comparing and evaluating different algorithms difficult [79]. In
order to ensure progress in the field, a distributed reinforcement learning system must produce results
that are easily reproducible by others. Furthermore, to support a wide spectrum of algorithms and
enable the creation of new algorithms, the distributed system must also be flexible. Implementing
a new RL algorithm should not require re-engineering intermediate system components or adding
new ones. Instead, existing system components need to be able to adapt to the needs of upstream
algorithms and use cases. Finally, the system should exhibit significant capability to scale to leverage
large quantities of physical computing resources efficiently. Deep RL methods often suffer from high
sample complexity due to the burden of exploring large state spaces and can benefit from diverse sets
of experience [85]. Leveraging large-scale distributed computation can help these methods collect

22
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Figure 3.1: Overview of the four-layer stack in Surreal-System: Cloudwise for cloud provision-
ing, Symphony for container orchestration, Caraml as a communication layer, and Surreal for
distributed reinforcement learning algorithms.

diverse experience quickly and help improve convergence rates.
Although existing distributed reinforcement learning algorithms such as Ape-X [85] and IM-

PALA [49] demonstrate an impressive capacity to scale up to many machines and achieve state-of-
the-art results across a wide spectrum of Atari benchmarks and continuous control domains, these
results are not easily reproducible by other researchers due to the difficulty of reimplementing the
software infrastructure and gathering the hardware resources necessary to recreate their experiments.
Many existing open-source reinforcement learning frameworks aim at providing high-quality imple-
mentations of these standard distributed RL algorithms, but they do not provide fully-integrated
support for the corresponding hardware resources [45, 71, 124].

Other existing systems in deep learning have also addressed some of these design paradigms.
TVM [29] is an open-source end-to-end optimizing compiler for maintaining deep learning model
performance across different hardware backends, while VTA [145] builds on top of the TVM compiler
to provide an entire deep learning stack that allows for control over both high-level software and
low-level hardware optimizations. While neither of these frameworks support scalability, the end-to-
end control of both hardware and software allows for both reproducibility of model performance and
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a flexible approach to designing models that can leverage different types of hardware capabilities.
In order to establish a distributed RL framework that produces consistent and reproducible

results that can be verified and built upon by researchers, the framework must provide an end-to-end
solution, from hardware provisioning and deployment to algorithms that operate at the highest level
of abstraction. Enabling control over hardware resources can benefit the flexibility and scalability of
such a system as well by supporting algorithms that might require several computing nodes running
on heterogenous hardware and software specifications. Therefore, we propose a general open-source
sequential decision making framework that provides the entire stack — from hardware deployment
to algorithms.

We present Surreal-System, a fully-integrated stack for distributed deep reinforcement learn-
ing. Surreal-System consists of four primary layers. The first layer, the Provisioner (Cloudwise
library), offers a common hardware abstraction for instance types and node pools across different
cloud vendors. It prepares the foundation for the next layer, the Orchestrator (Symphony library),
that builds upon a community-standard cloud API (Kubernetes). Symphony allows users to specify
an experiment’s launch logic, hardware resources, and network connectivity patterns in high-level
description. It provides a unified frontend for orchestration and deployment to different backends
ranging from local laptop to cloud clusters. Once an experiment has been configured, the Protocol
layer (Caraml library) handles all the communications between algorithmic components. Simulated
experience data and neural network parameters can be transferred very efficiently, thanks to the RL-
specific optimizations we make. Finally, we provide competitive implementations of policy gradient
algorithms and Evolution Strategies (Surreal libary) as well as demonstrating their performance
and capacity to scale in large-scale experiments.

In Sec. 3.5 we show how our stack scales efficiently to heterogeneous clusters having 1000s of CPUs
and 100s of GPUs when using both Proximal Policy Optimization(PPO) and Evolution Strategies
(ES). We achieve near linear scaling in environment frames per second with number of agents
demonstrating the effectiveness of our communication stack. We also show how optimizations like a
load balanced replay, batched actors and optimized communication help us further improve system
performance.

We also show the learning performance of our algorithms in Sec. 3.6 for a range of OpenAI Gym
tasks as well as more challenging Robotics Suite tasks introduced in our prior work [208]. By using
1024 agents, our PPO implementation is able to partially solve even the most challenging tasks which
were unsolved when using fewer agents hence showing the advantage of massively distributed RL.
Our ES implementation also outperforms the reference implementation [124] on a range of OpenAI
Gym tasks. The contributions of our work are as follows:

1. We propose Surreal-System, a reproducible, flexible, and scalable framework for distributed
reinforcement learning.

2. We introduce a streamlined four-layer stack that provides an end-to-end solution from hardware
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to algorithms. It can both massively scale on full-fledged cloud clusters and quickly iterate
research ideas on a local machine.

3. We describe the details and perform evaluations of our algorithmic implementations on a
variety of control tasks. They show highly competitive with the state-of-the-art results.

3.2 Related Work

Reinforcement learning methods, powered by deep neural networks, often require a significant
amount of experience for learning. This has accentuated the advantages of large-scale distributed
learning methods for learning efficiency. A series of deep learning models and algorithms have been
proposed for large-scale sequential decision making. One notable class of architectures and algo-
rithms scales deep RL methods by using asynchronous SGD to combine gradients and update global
parameters. The Gorila architecture [148] proposes to use multiple actors, multiple learners, a dis-
tributed experience replay memory, and a parameter server that aggregates and applies gradients
shared by the learners. A3C [140] instead utilizes several CPU threads on a single machine, where
each thread is an actor-learner that shares gradients with the other threads. A distributed version of
PPO was also introduced by [78] with several workers that collect experience and send gradients to a
centralized learner. However, sharing gradients instead of experience is less desirable since gradients
become stale and outdated much more quickly, especially for off-policy methods.

Another class of architectures scales deep RL methods via several actors that solely collect and
send experience, a distributed replay memory and parameter server, and one centralized learner
that performs parameter updates using experience sampled from the replay memory. Ape-X [85],
IMPALA [49], and Surreal-PPO implementation fall into this category. In contrast to prior work
which focused on off-policy methods, we extend this paradigm to accommodate on-policy learning.

Prior work has also shown the efficacy of distributed algorithms based on evolutionary computa-
tion. [186] applied Evolution Strategies (ES) to common deep RL benchmarks and found that their
method could scale to many more distributed workers than RL algorithms while achieving compet-
itive results. Similarly, [207] found that a simple genetic algorithm (GA) could leverage distributed
computation much more effectively than RL methods, which suffer from bottlenecks during learning,
and also produce competitive results on several domains.

Existing frameworks of distributed RL algorithms exploit both data parallelism and model par-
allelism to learn on massive data [40]. Open-source libraries for distributed RL include OpenAI
Baselines [45], TensorFlow Agents [71], Neuroevolution [207], etc. These libraries focus on algo-
rithm implementations built on third-party learning frameworks, such as Tensorflow and PyTorch,
without providing infrastructure support for computing runtime. Ray RLlib [124] is built on the
Ray distributed framework designed for machine learning applications. It also has flexibility in sup-
porting different types of distributed algorithms, including Evolution Strategies (ES) and Proximal
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Table 3.1: Symphony backend feature comparisons

Backends Scalability Autoscaling Containerized Debugging
Kubernetes Multi-node on cloud Yes Yes Slow
Tmux Local only No No Fast
Docker-compose Multi-node only with Swarm No Yes Fast
Minikube Local only, simulates cloud No Yes Slow

Policy Optimization (PPO). In contrast to Ray RLlib, Surreal also provides a set of toolkits that
sit between the learning algorithms and the hardware for scalable deployment in different computing
platforms.

3.3 Distributed Reinforcement Learning Full Stack

Unlike data parallelism in supervised learning, distributed reinforcement learning (RL) algorithms
require complex communication patterns between heterogeneous components, increasing the burden
of engineering in reinforcement learning research. Our goal is to open source a computing infras-
tructure that makes the runtime setup effortless to upper-level algorithm designers with flexibility,
reproducibility and scalability as our guiding principles.

We design a four-layer distributed learning stack as shown in Fig. 3.1, which decouples the end-
user algorithms from the underlying computing runtime. Users of Surreal-System should be able
to replicate our cluster setup, reproduce our experimental results, and rapidly iterate new research
ideas on top of our algorithmic libraries. Each component can be used independent of each other, or
even outside the Surreal context to facilitate other cloud-based distributed tasks. Here we provide
an overview of our four-layer stack for distributed RL systems, from the cloud computing hardware
to the RL algorithm implementations.

3.3.1 Provisioner: Cloudwise

Cloudwise aims to achieve a fully reproducible Surreal cluster setup running on the users’ cloud
account. Cloudwise abstracts away the cloud instances and node-pool configurations between dif-
ferent cloud providers. For example, Google Cloud machine type identifiers look like n1-standard-4

and n1-highmem-64, while Amazon AWS uses a distinct naming scheme such as t2.small and
m5d.24xlarge. They also have different mechanisms to deploy native clusters.

To standardize across different conventions, Cloudwise makes the following two design choices:

1. Lifts a cloud account to be Kubernetes-ready. Kubernetes [17] is a well-established, open-
source cloud API standard compatible with all major cloud providers.

2. Uses descriptive Python parameters (e.g. cpu=48, gpu type="v100", gpu=4) that translate
to the corresponding terminology on different cloud services.
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Cloudwise automates the tedious and convoluted procedure of setting up a customized Sur-
real Kubernetes cluster from scratch. The library only needs to be run once before any experiment.
After the setup, the upper layers will not be able to tell apart the differences between cloud providers,
such as GCE or AWS. Cloudwise is also capable of adding, removing, and editing the properties
of node pools after the cluster has been created.

3.3.2 Orchestrator: Symphony

Once the user sets up the cloud account with Cloudwise, the Symphony library takes over and
helps orchestrate Experiments on top of Kubernetes.

Each Experiment is a logical set of Processes and ProcessGroups that communicate with each
other through intra-cluster networking. A ProcessGroup contains a number of Processes that are
guaranteed to be scheduled on the same physical node. Users can easily specify per-process resources
(e.g., CPU-only node for actors and GPU nodes for learner) as well as their network connectivity,
while Symphony takes care of scheduling and book-keeping. It uses containerization (Docker) to
ensure that the runtime environment and dependencies are reproducible.

Furthermore, Symphony supports auto-scaling out of the box. The auto-scaling mechanism
spins up or tears down nodes as new experiments start or old experiments terminate. It is highly
economical for small research groups because no cloud instances are left running without a workload.
Team members can collaborate on the same cluster and check each others’ experiment status.

Multiple Orchestration Backends

A prominent feature of Symphony is its flexibility to deploy the same experiment logic on dif-
ferent computing environments, ranging from a personal laptop to a full-fledged cloud cluster. In
this regard, Symphony provides the users with a unified interface for process orchestration and
networking. Once users specify an abstract Experiment and connectivity configuration, they can
choose from a variety of backends that satisfy different stage of development. We currently support
the following four modes (also summarized in Table 3.1):

Kubernetes (“Kube”) backend. This is the primary use case of Symphony. It deploys to the
Kubernetes engine on the users’ cloud provider, and its scalability is limited only by the resource
quota and budget. All processes (“pods” in Kubernetes terminology) are containerized, thus avoiding
dependency issues. Kubernetes is suitable for deploying large-scale experiments after validating on
a smaller scale. To enable fast iteration and development, we provide Tmux, Docker-compose and
Minikube as well.

Tmux backend. tmux is a terminal multiplexer that allows users to access multiple terminal
sessions in separate “panes” inside a single window. We build the backend upon tmux’s panes to
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deploy a distributed experiment on an interactive machine (personal laptop/desktop or ssh-reachable
machine). The merit is that we can now quickly iterate on the codebase. Any code updates will be
reflected immediately in the local tmux session; error messages, if any, will emerge almost instantly.
The demerit is that there is no containerization, and users will be responsible for installing the
dependencies manually. In addition, tmux does not support multi-node distributed training.

Docker-compose backend. This backend is a reconciliation of Tmux and Kube modes. It deploys
locally on any interactive machine that has docker installed. Docker-compose eliminates the need
to install complex dependencies locally and does not incur the Kube pod creation overhead. In
future upgrades, we will also support docker-swarm, which will enable multi-node communication
for this backend.

Minikube backend. Conceptually the same as the Kube backend, minikube deploys on a local
machine and simulates the full-blown cloud environment. Users can test their implementation thor-
oughly before running on the cloud account to avoid any unnecessary computing costs. Minikube
backend has exactly the same API and command line interface as Kube backend, thus the migration
to the real cluster will be relatively effortless.

Load-balancing and Sharding

Kubernetes is designed to provide horizontal scalability and handle large workloads. When using
Symphony and Caraml on Kubernetes, components of a distributed learning algorithm can be
sharded and requests to them are load balanced. For example, when a single replay server is not able
to handle data generated by a large number of actors, one can create multiple shards. Symphony
manages service declaration on Kubernetes to ensure that they process workload evenly. The effect
of sharding the replay server is further discussed in Sec. 3.5.3.

3.3.3 Protocol: Caraml

The Caraml library (CARefree Accelerated Messaging Library) is our communication protocol
based on ZeroMQ (a high performance messaging library) and Apache Arrow (in-memory data
format for fast serialization). Caraml implements highly scalable distributed directives, such as
Push-Pull for actors sending experience to replay and Publish-Subscribe for broadcasting pa-
rameters to actors. Caraml offers a more transparent alternative to frameworks like distributed
TensorFlow [1], and applies to use cases beyond machine learning as well.

In distributed learning scenarios, high-dimensional observation vectors and large network pa-
rameters frequently make communication and serialization the bottleneck of the system. Caraml
provides specific optimizations to avoid these problems. For example, we use Caraml Data Fetcher
to fetch data from separate processes (actors) and transfer to the main process using a shared memory
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Figure 3.2: Our framework provides abstractions for composing heterogeneous parallel components
for different distributed learning algorithms. In this work, we demonstrate two types of algorithms:
a) System diagram for on-policy and off-policy reinforcement learning methods. Actor nodes share
their experiences with a buffer server, that relays them to the learner server. The updated parameters
are broadcast back to the actors via the parameter server. b) System diagram for Evolution Strategies
implementation. The actors communicate their experiences to a master node to be broadcasted to
all nodes. Parameter updates happen simultaneously in all actors.

(reply buffer). This offloads serialization and networking from the main process. We quantitatively
examine the speed-up of RL algorithms from Caraml’s optimizations in Sec. 3.5.5.

3.3.4 Algorithm: Surreal

The algorithm layer at the top of hierarchy uses high-level abstractions of orchestration or communi-
cation mechanisms. The clean decoupling between algorithms and infrastructure fulfills our promise
to deliver a researcher-friendly and performant open-source framework.

Surreal provides a flexible framework for composing heterogenous parallel components into
various types of distributed RL methods. It allows the end users to rapidly develop new algo-
rithms while encapsulating the underlying parallelism. To showcase the flexibility, we develop two
distributed learning algorithms with contrastive patterns of parallelism as illustrated in Fig. 3.2:
Proximal Policy Optimization (PPO) and Evolution Strategies (ES). PPO requires the coordination
of different types of components, including actors, learner, buffer, and parameter server. In contrast,
ES is easily parallelizable with an array of homogeneous actors and a master node for model update.
We provide an overview of the PPO and ES algorithms in Sec. 3.3.4 and Sec. 3.3.4 respectively. We
perform system analysis and quantitative evaluation on our implementations in Sec. 3.5 and Sec. 3.6.

In addition to Surreal-PPO and Surreal-ES, our prior work [208] has also implemented a
variant of Deep Deterministic Policy Gradient (DDPG) [126] in the Surreal framework. Surreal-
DDPG uses the same setup as Surreal-PPO, involving actor, learner, replay and parameter server.
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In contrast to PPO, DDPG is off-policy and reuses observation. Its replay servers thus contain a big
replay memory, entries in which are sampled by the learner. From our experiments, we have seen a
better learning scalability of Surreal-PPO, so we focus on discussing the learning performances of
Surreal-PPO. A more complete comparisons between these two algorithms can be found in [208].
Surreal-DDPG will be relevant to us in Sec. 3.5 where we discuss several design choices to build
a system that can accommodate both PPO and DDPG algorithms in a unified abstraction.

Proximal Policy Optimization

Policy gradient algorithms [211] are among the most robust methods for continuous control. They
aim to directly maximize the expected sum of rewards J(θ) = Eτθ

[∑
t γ

t−1r(st, at)
]

with respect to
the parameters θ of the stochastic policy πθ(a|s). The expectation is taken over τθ, which denotes the
trajectories induced by πθ interacting with the environment. The vanilla policy gradient estimator
is given by ∇θJPG = Eτθ [

∑
t∇θ log πθ(at|st)At]. At is the advantage function, typically formulated

as subtracting a value function baseline from the cumulative reward, Rt − V (st).
Policy gradient estimates can have high variance. One effective remedy is to use a trust re-

gion to constrain the extent to which any update is allowed to change the policy. Trust Re-
gion Policy Optimization (TRPO) [192] is one such approach that enforces a hard constraint on
the Kullback-Leibler (KL) divergence between the old and new policies. It optimizes a surro-
gate loss JTRPO(θ) = Eτθold

[∑
t

πθ(at|st)
πθold (at|st)At

]
subject to KL [πθold |πθ] < δ. More recently, Prox-

imal Policy Optimization (PPO) has been proposed as a simple and scalable approximation to
TRPO [194]. PPO only relies on first-order gradients and can be easily combined with recurrent
neural networks (RNN) in a distributed setting. PPO implements an approximate trust region
via a KL-divergence regularization term, the strength of which is adjusted dynamically depend-
ing on actual change in the policy in past iterations. PPO optimizes an alternative surrogate loss
JPPO(θ) = Eτθold

[∑
t

πθ(at|st)
πθold (at|st)At − λ ·KL[πold|πθ]

]
, where λ is adjusted if the actual KL falls out

of a target range. Our Surreal-PPO implementation is a distributed variant of the PPO algorithm
with the adaptive KL-penalty [78].

Evolution Strategies

Evolution Strategies (ES) [186] seeks to directly optimize the average sum of rewards. ES belongs to
the family of Natural Evolution Strategies (NES) [237] and draws on intuition of natural evolution:
a population of model parameters are maintained; at each iteration, each set of parameters are
perturbed and evaluated; and models with the highest episodic return is recombined to be the base
parameters of next iteration.

Specifically, we let θ be our model parameters with population distribution pψ(θ) parametrized by
ψ. We can then take gradient step on ψ to optimize J(θ): ∇ψEθ∼pψJ(θ) = Eθ∼pψ{J(θ)∇ψ log pψ(θ)}.
Following recent work [186], we can reparametrize our population with mean parameter θ and
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Figure 3.3: Scalability of environment interactions (in FPS) with respect to the number of actors
on Surreal-PPO (Robotics Suite) and Surreal-ES (OpenAI Gym).

Gaussian noise ε ∼ N(0, I) scaled by σ as perturbations to the mean parameters. It allows us to
estimate gradient of the return as follows:

∇θEε∼N(0,I)J(θ + σε) = 1
σ
Eε∼N(0,I){J(θ + σε)ε}

ES is intrinsically different from PPO. We highlight two major distinctions: First, as shown in
the equation above, no gradient is computed for our step estimate. Hence, specialized hardware
like GPUs has a less impact on ES than PPO. Second, as suggested by recent work [118], ES does
not seek to optimize each and every actor’s performance as in PPO. Instead, ES optimizes the
average rewards of the entire population, thereby yielding robust policies that are less sensitive to
perturbations.

3.4 Interface Design for Agile Research

The Surreal-System stack facilitates the development and deployment of distributed learning
algorithms from the ground up. In this section, we provide a walk-through of our system implemen-
tation from an end-user’s perspective. We will start with a bare-bone cloud account, walk up the
ladders of abstractions, and reach the end goal of implementing distributed RL algorithms.
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3.4.1 Provision a Computing Cluster

Surreal reaches its full potential when running on a Kubernetes cluster. Cloudwise is a helper
for setting up a Kubernetes cluster suitable for RL runtime. As shown in Fig. 3.8a, Cloudwise
allows intuitive user interactions and generates a terraform definition which can be used to boot up
the cluster. We also provide terraform files defining the cluster used in our experiments.

3.4.2 Defining a Distributed Experiment

Symphony provides a simple way of declaring a distributed environment. Each distributed experi-
ment is made up of multiple processes. They are declared in the launch script. Network communi-
cation patterns are specified by letting each process declare the services it provides and the services
it binds to. An example can be seen in Fig. 3.8b.

Thanks to these platform-agnostic communication patterns, launch mechanisms in Symphony
can automatically configure different platforms to expose the necessary network interfaces. For
example, Symphony would create and configure platform-specific “services” when Kubernetes or
Docker compose is used. It will assign local port numbers in Tmux mode. These arranged addresses
are provided in the form of environment variables. See Fig. 3.8c for an example. This design allows
smooth transition from local, small scale development to cloud-based large-scale deployments.

3.4.3 Scheduling Processes Flexibly

Symphony provides bindings with various platforms to enable flexible scheduling (see Fig. 3.8d).
Allowing processes to claim sufficient amounts of resources ensures that components run at full
speed. Being able to control how much resource to allocate can drastically improve efficiency of
algorithms. For instance, we demonstrate in Sec. 3.5.4 that running multiple actors on the same
GPU can substantially improve the resource utility of a learning algorithm.

3.4.4 Dockerizing for Reproducibility

Surreal experiments on Kubernetes are always dockerized to ensure scalability. This guarantees
good reproducibility as the code for every launched experiment resides in a specific docker image
in the registry. Moreover, Symphony provides serialization for experiment declaration, saving not
only source code but also the launching scripts. To ease the process of building docker images,
Symphony provides docker building utilities. For example, one can assemble files from multiple
locations and build them into a single docker image.
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3.4.5 Managing Experiments Conveniently

Symphony also provides utilities to manage multiple experiments running on the same cluster. An
example can be seen in Fig. 3.8e. One can view all running experiments, view all running processes
of an experiment, and view logs of each process. These functionalities also allow team members to
cooperate and exchange progress.

3.4.6 Running Surreal Algorithms

Surreal algorithms are developed with tools provided by Cloudwise, Caraml, and Symphony.
Surreal is designed to be easily extensible. One can implement a new Learner subclass with
different model architectures and different learning schemes. The Launcher class provides a unified
interface such that custom-built Surreal components can be properly executed by scheduling code
(see Fig. 3.8f).

3.5 Systems Benchmarking

Built to facilitate large distributed computation, Surreal-System allows algorithms to utilize large
amounts of computing power. In this section, we investigate the system scalability with the Surreal
learning algorithms.

3.5.1 Evaluation Tasks

To examine the quality of our implementation of Surreal-System, we examine the performance
and efficiency of Surreal-PPO and Surreal-ES in solving challenging continuous control tasks
with these two algorithms.

We evaluate our Surreal-PPO implementation on four robot manipulation tasks in Robotics
Suite [208]. These tasks consist of tabletop manipulation tasks with single-arm and bimanual robots.
We provide screenshots of these manipulation tasks in Fig. 3.5. All four tasks are complex and
multi-stage, posing a significant challenge for exploration. In particular, we evaluate the strengths
of Surreal-PPO in learning visuomotor policies from pixel to control. The neural network policy
takes as input RGB images and proprioceptive features and produces joint velocity commands at
10Hz. We evaluate our Surreal-ES implementation on locomotion tasks in OpenAI Gym [15]. We
report quantitative results on four locomotion tasks, including HalfCheetah, Hopper, Swimmer, and
Walker2d. These standard tasks are used by prior work [186] for benchmarking Evolution Strategies
implementations.
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Throughput
# Replay Shards (×103 observations/s)

1 3.5
3 4.5
5 4.5

Table 3.2: Effect of sharding the replay buffer when using Surreal-DDPG with 128 actors.
Throughput measures the total number of actor observations received by the replay server.

3.5.2 System Scalability

We run our experiments on Google Cloud Kubernetes Engine. Surreal-PPO actors for the
Robotics Suite tasks were trained with 1 learner on a machine with 8 CPUs and a Nvidia V100
GPU, accompanied by 1, 4, 16, 64, 256, or 1024 actors. Multiple actors were run on the same
machine in order to fully utilize the GPU (see Sec. 3.4 for details); for tasks Block Stacking, Nut-
and-peg Assembly, and Bimanual Lifting, we place 16 actors on each machine of 8 CPUs and 1
Nvidia P100 GPU. For the Bin Picking task, we place 8 actors on each machine due to memory
constraints. For OpenAI Gym were the actor nodes do not need a GPU for rendering and hence we
use a dedicated 2-CPU machine per actor. The Surreal-ES experiments were run on CPU only
machines with 32 cores each with up to 32 actors batched per machine.

We measure Surreal-PPO’s scalability in terms of total actor throughput, which is the total
environment frames generated by all actors combined per second. Fig. 3.3 shows our total actor
throughput on the Block Stacking task. We see an approximately linear increase in total frames
generated with an increase in actors.

We measure Surreal-ES’s scalability in terms of total environments interactions per second.
Fig. 3.3 shows an almost linear scaling of the same with the number of actors on various Gym
environments.

3.5.3 Load Balanced Replay

As described in Sec. 3.3.2, the combination of Symphony, Caraml, and Kubernetes enables simple
and effective horizontal scalability. One example is sharding replay when training Surreal-DDPG
on the Gym Cheetah environment. Table 3.2 shows the number of experiences handled in total with
1, 3, and 5 sharded replays in presence of 128 actors. A single replay buffer can no longer handle
all the actor outputs, becoming the bottleneck of the system. Three load-balanced replay buffers
resolves congestion. More replays does not further improve overall throughput.

3.5.4 Batching Actors

As described in Sec. 3.4.3, Surreal-System supports a flexible scheduling scheme. It allows us to
utilize resources more efficiently. We demonstrate this point by using Symphony to batch multiple
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Figure 3.4: Speed of policy evaluation on the Block Lifting task with pixel observations. We compare
system speed with and without GPU acceleration. In the cases where a NVIDIA K80 GPU is used,
we consider sharing the GPU among multiple actors. a) Total throughput. The number of envi-
ronment frames collected by all actors. b) Throughput per actor. The number of environment
frames collected by a single actor.

Surreal-PPO actors on the same GPU. Fig. 3.4 shows policy evaluation speed on vision-based
Block Lifting tasks, measured by environment frames per second. Each actor gets 1, 1

8 , or 1
16 of

a NVIDIA K80 GPU. Actor speed on CPU is provided for reference. Fig. 3.4a shows per GPU
throughput measured by the total number of frames generated by all actors on the same GPU.
Higher throughput means that experiments are more resource-efficient. Sharing a GPU among
multiple actors achieves a better throughput and thus increases GPU utilization. However, as seen
in Fig. 3.4b, each actor’s speed decreases with an increasing number of actors sharing the same
GPU. We set 16 actors per GPU in our experiments to attain the best trade-off between number of
actors and per-actor throughput.

3.5.5 Serialization and Communication

In distributed RL algorithms, feeding large amounts of training data to the learner requires fast
network communication and fast serialization. Doing everything on the main Python process would
bottleneck the entire system. Caraml offloads communication to separate processes to circumvent
global interpreter lock. It then serializes data and saves them to a shared memory to minimize
interprocess data transfer. PyArrow is used to serialize data because it provides fast deserialization.
The speed-up of these optimizations is measured on reinforcement learning algorithms Surreal-
DDPG and Surreal-PPO trained on the Gym Cheetah environment. Speed-up measured by
learner iterations per second is reported in Table. 3.3. The speed-up in DDPG is more pronounced
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(a) Bimanual Lifting (b) Block Stacking

(c) Bin Picking (d) Nut-and-peg Assembly

Figure 3.5: Screenshots of our robot manipulation tasks in Robotics Suite [208]: a) Bimanual
Lifting. The goal is to grab the pot by both handles and lift it off the table; b) Block Stacking.
The robot picks up the red block and places it on top of the green one; c) Bin Picking. The robot
picks up each item and place each into its corresponding bin; d) Nut-and-peg Assembly. The
goal is to place the nut over and around the corresponding pegs.

as PPO is less communication bound than DDPG. In comparison, the PPO learner iteration performs
more computation than that of DDPG.

3.6 Quantitative Evaluation

Here we further examine the effectiveness and scalability of Surreal-System in learning efficiency
and agent performance. To this end, we implement the Proximal Policy Optimization (PPO) and
Evolution Strategies (ES) algorithms using the APIs provided by our framework. These two algo-
rithms have distinct characteristics: ES is embarrassingly parallel with a large number of homogenous
actors, while PPO requires the coordination between heterogeneous types of parallel components.
Our primary goal is to answer the following two questions: 1) are our implementations of these two
algorithms capable of solving challenging continuous control tasks and achieve higher performances
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PPO (iters/s) DDPG (iters/s)
without optimization 5.1 5.4
with optimization 38 54

Table 3.3: Learner iteration speed for PPO and DDPG with and without the communication opti-
mizations of Caraml. Numbers are obtained when training on the Gym Cheetah environment.

than prior implementations, and 2) how well can our distributed algorithms scale up with an in-
creasing amount of computational resources? The experiment setup used here is same as the one
described in Sec. 2.4.

3.6.1 Surreal-PPO Evaluation

For each of the Robotics Suite tasks, we train a PPO model which takes as input an 83 × 83 × 3
RGB image and proprioceptive features (e.g., arm joint positions and velocities). The image is
passed through a convolutional encoder. The resulting activations are flattened to a vector and
concatenated to the proprioceptive features, which is further fed through an LSTM layer of 100
hidden units. The output of the LSTM layer is passed through additional fully-connected layers of
the actor network and the critic network for producing the final outputs.

Fig. 3.6 reports results of our PPO implementations with varying number of actors. We see an
overall trend towards higher scores and faster training with an increased number of actors. In the
Bimanual Lifting and Bin Picking tasks, we observe a substantial benefit of using 1024 actors, where
the learned policy is able to advance to later stages of the tasks than the runs with fewer actors.
The trained PPO model is able to pick up the can and place it into the bin in the Bin Picking task,
and in the Bimanual Lifting task is able to lift the pot off the table. In the Block Stacking and
Nut-and-peg Assembly tasks, the experiments with 256 actors and 1024 actors managed to converge
to the same level of performance, which achieve both faster and better learning than the ones with
fewer actors.

3.6.2 Surreal-ES Evaluation

Our ES implementation takes low-dimension state features as input. These features are passed
through a network with two fully-connected layers. The activations are passed through a final
fully-connected layer and tanh activation to map to the predefined action space. To interact with
the environment, we use a stochastic policy with mean generated from the neural network and
fixed standard deviation of 0.01. For the population noise, we sample from Gaussian distribution
centered at 0 with standard deviation 0.02. Additionally, we discretize the action space to 10 bins
per component for Swimmer and Hopper to aid exploration.
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(a) Bimanual Lifting (b) Block Stacking

(c) Bin Picking (d) Nut-and-peg Assembly

Figure 3.6: Scalability for Surreal-PPO experiments on Robotics Suite tasks. The solid line rep-
resents mean return and the translucent region around the mean represents one standard deviation.
PPO models were trained on 1, 4, 16, 64, 256, and 1024 actors.

Fig. 3.6 shows performances of our ES implementation on various locomotion tasks with increas-
ing number of actors. We see that Surreal-ES scales well with a large number of actors, leading
to faster convergence and shorter training time. We hypothesize that it is attributed to the effects
of improved exploration with more actors executing diverse policies. Through experimentation, we
find that the scale of standard deviation of Gaussian noise compared to the scale of parameters
greatly impacts learning efficacy. High noise values cause learning to be unstable whereas low noise
values cause slow learning.

Surreal-ES is very competitive with the state-of-the-art reference implementation [124] as
shown in Fig 3.7. Across all four Gym environments, Surreal-ES outperforms Ray RLlib in terms
of both final performance and wall-clock time.
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Figure 3.7: Scalability of Surreal-ES on OpenAI Gym tasks. The dashed line represents the best
curve obtained by Ray RLlib [124] with 1024 actors and the rest correspond to our implementation
trained with 16, 64, 256, 1024 actors.

3.7 Conclusion

We introduced Surreal-System, a four-layer distributed learning stack for reproducible, flex-
ible, scalable reinforcement learning. It enables an end-user to deploy large-scale experiments with
thousands of CPUs and hundreds of GPUs, facilitating researchers to rapidly develop new dis-
tributed RL algorithms while reducing the effort for configuring and managing the underlying
computing platforms. We have released the complete source code of our Surreal framework
(https://github.com/SurrealAI) to the research community. We hope that this project could
facilitate reproducible research in distributed reinforcement learning.

https://github.com/SurrealAI
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>> python cloudwise -gke.py
Please give your cluster a name
> kuflexes
Do you wish to create a node pool

with 32 CPUs and 1 Nvidia V100
GPU per machine?

> Yes
...
Generating kuflexes.tf.json
Use "terraform␣apply" to create

the cluster

(a) Interacting with Cloudwise CLI to gen-
erate cluster specification.

# launch_experiment.py
exp = symphony.Experiment ()
learner = exp.new_process(cmd="

python␣learner.py")
replay = exp.new_process(cmd="

python␣replay.py")
replay.binds("replay")
learner.connects("replay")
cluster.launch(exp)
...

(b) Declaring a distributed experiment us-
ing Symphony. Network connnections are
defined in a straightforward way.

# learner.py
host = os.environ["

SYMPH_REPLAY_HOST"]
port = os.environ["

SYMPH_REPLAY_PORT"]
sender = caraml.Sender(host=host ,

port=port , serializer=pickle.
dumps)

sender.send(data)
# replay.py
...
receiver = caraml.Receiver(host=

host , port=port , serializer=
pickle.loads)

data = receiver.recv()

(c) Symphony maps network address to en-
vironment variables so network connection is
compatible across platforms.

# launch_experiment.py
exp = symphony.Experiment ()
learner = exp.new_process(cmd="

python␣learner.py")
dispatcher = symphony.Dispathcer(

cluster= "kuflexes.tf.json")
dispatcher.assign_to_nodepool(

learner ,
"v100 -nodepool", cpu=5, gpu

=1)

(d) Symphony provides scheduling bindings
to underlying clusters.

# monitoring experiments
>> kuflexes list -experiments
Humanoid
Cheetah
>> kuflexes switch -experiment

Cheetah
>> kuflexes list -processes
actor -0
...
>> kuflexes logs actor -0
actor -0 running ...

(e) Symphony provides experiment manage-
ment features to view experiments and pro-
cesses.

# ppo_better.py
class BetterPPOLearner(PPOLearner)

:
...

# launch_ppo_better.py
from ppo_better import

BetterPPOLearner
launcher = surreal.PPOLauncher(

learner=BetterPPOLearner)
launcher.main()

(f) Surreal is designed to be easily exten-
sible. Each component can be subclassed to
show custom behaviors.

Figure 3.8: Code snippets for various Surreal use cases. The Surreal-System stack provides
support for cluster creation, experiment declaration, network communication, resource allocation,
experiment management and extensions.



Chapter 4

Realistic Simulation for Embodied
Visual Agents

4.1 Introduction

Simulation environments have proliferated over the last few years as a way to train robots and
interactive agents in a rapid and safe manner. In these environments, agents learn to engage in
physical interactions [126, 120], navigate based on sensor signals [138, 157, 264, 196, 27], or plan
long-horizon tasks [61, 247, 240, 122]. In simulation, agents learn to perform interactions that actively
change the input sensor signals and the state of the environment towards a desired configuration,
capabilities at the core of what an embodied agent needs to achieve.

However, existing simulation environments that combine physics simulation and robotic tasks
often cater to a narrow set of tasks and include only clean, small-scale scenes [93, 253, 224, 244,
117, 266]. The few simulation environments that include large scenes such as homes or offices either
disable the possibility of interacting with the scene, focusing only on navigation (e.g. Habitat [134]),
or use simplified modes of interaction (e.g. AI2Thor [105], VirtualHome [168]). These simulators
do not support the development of end-to-end sensorimotor control loops for tasks that require rich,
continuous interaction with the scene. Such tasks are difficult to accomplish in the aforementioned
simulators, and the simplified modes of interaction lead to difficulties in transferring the learned
policy onto real robots.

We present iGibson 1.0 (alternative called just iGibson in this manuscript), a novel simulation
environment that enables the development of embodied agents for interactive tasks in large-scale
realistic scenes (Fig. 4.1). Interactivity is achieved by leveraging a physics engine processing all
elements in the scene, enabling manipulation of rigid and articulated objects as well as mobility.
iGibson 1.0 aims at unifying several aspects of robot simulation that are often available in different
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Figure 4.1: Robot performs an interactive task in iGibson 1.0. It operates in the kitchen of one of
iGibson’s fully interactive scenes, planning an interaction with the arm using a integrated sampling-
based motion planner and receiving first-person view. Bottom: The same scene can be randomized
with different materials and/or object models

software tools, such as physics simulation for interaction with objects and robot control, high-
quality simulated sensors, integration with reinforcement learning frameworks, and realistic indoor
scenes that reflect the objects distribution of real homes. This integration allows fully physics based
simulation of robot tasks (i.e. simulating the full complexity of the task) and allows developing task
and motion planning, reinforcement learning or imitation learning solutions for those tasks with
virtual sensor signals.

iGibson 1.0 contains 15 fully interactive and visually-realistic scenes with a total of 108 rooms.
These scenes were generated by annotating 3D reconstructions of real-world scans (static scenes
represented by a single mesh) and converting them into fully interactive scene models (scenes filled
with articulated object models). In this process, we respect the original object-instance layout and
object-category distribution. The object models are extended from open-source datasets [24, 233,
244] enriched with annotations of material and dynamic properties. iGibson’s physics-based renderer
leverages the extra information provided in the material annotation (maps of metallic, roughness
and normals) to generate high-quality virtual images. To further facilitate the training of more
robust visuomotor agents, iGibson 1.0 offers domain randomization procedures for materials (both
visual appearances and dynamics properties) and object shapes while respecting the distribution of
object placements and preserving interactability. iGibson 1.0 is also equipped with a graphical user
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interface that allows human users to easily interact with the scenes, enabling efficient collection of
human demonstrations for imitation learning.

In summary, iGibson 1.0 provides the following novel features that facilitate developing and
training robotic solutions:

1. Fifteen fully interactive scenes containing 108 rooms modelled after real world homes with
articulated object models annotated with materials and dynamics properties. Additionally, we
support importing CubiCasa5K [100] and 3D-Front [57] layouts, giving access to more than
12000 additional fully interactive scenes.

2. Realistic virtual sensor signals, including a physics-based renderer (PBR) for RGB images,
rendering of normals, depth, point clouds, virtual LiDAR signals, and optical/scene flow. We
further integrate domain randomization functionality (visual texture, dynamics properties and
object instances) that facilitates generalization to unseen scenes.

3. Useful tooling for developing robotics solutions in simulation, such as a human-computer in-
terface for humans to provide interactive demonstrations, and sampling-based motion planners
for navigation and manipulation.

We demonstrate the benefits of these novel features in a comprehensive set of experiments in
which visual agents are trained for navigation and interactive tasks. Our experiments show that
iGibson 1.0 enables researchers to 1) train more robust and generalizable sensorimotor policies thanks
to its realistic virtual sensor signals (including LiDAR) and domain randomization mechanisms, 2)
collect human demonstrations and train imitation learning policies for manipulation and mobile
manipulation tasks, and 3) learn intermediate visual representations linked to interactability of the
scene that accelerate training of downstream manipulation tasks. iGibson 1.0 is open-source and
academically developed, and available on our website http://svl.stanford.edu/igibson/.

4.2 Related Work

The use of simulation in robotics has significantly increased in recent years and the research com-
munity has proposed a number of simulators for robotics and embodied AI. Here, we use the terms
physics simulator and simulation environment as follows. A physics simulator is an engine capable
of computing the physical effect of actions on an environment (e.g. motion of bodies when a force
is applied, or flow of liquid particles when being poured) [38, 220, 114, 215, 125, 153]. On the other
hand, a simulation environment is a framework that includes a physics simulator, a renderer of
virtual signals, and a set of assets (i.e. models of scenes, objects, robots) ready to be used to study
and develop solutions for different tasks. Both components are crucial for advancing embodied AI
and robotics. Here, we focus on the discussion of simulation environments.

http://svl.stanford.edu/igibson/
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Figure 4.2: Comparison of Simulation Environments

Several simulation environments have been proposed recently to study manipulation with sta-
tionary arms [253, 93, 266, 48, 117]. Most of them are based on Bullet [38] or MuJoCo [220] for
physics simulation, and render images with the default renderer or a Unity [215] plugin. Different
from these simulation environments, iGibson focuses on large-scale (house-size) scenes and includes
fifteen fully interactive scenes with 108 rooms – such as kitchens and bedrooms – where researchers
can develop solutions for navigation, manipulation and mobile manipulation.

Closer to iGibson are simulation environments that include large-scale realistic scenes (e.g. homes
or offices), which we summarize and compare in Fig 4.2. Gibson [243] (now Gibson v1) was the
precursor of iGibson. It includes over 1400 3D-reconstructed floors of homes and offices with real-
world object distribution and layout. Although Gibson incorporates PyBullet as its physics engine
for simulating robot navigation, each scene is one single fully rigid object (static mesh). Thus, it
does not allow agents to interact with the scenes other than collisions with the mesh, restricting its
use to only navigation.

A similar environment is Habitat [134]. Despite its high rendering speed, Habitat uses the non-
interactive assets from Gibson v1 [243] and Matterport [23] and therefore only supports navigation
tasks and simplified rearrangement of added objects. Recent work [242] introduced an extension to
the Gibson v1 environment to support Interactive Navigation [242] where parts of the reconstructions
corresponding to five object classes (chairs, tables, desks, sofas, and doors) in several Gibson static
models were segmented and replaced with interactive versions. This enabled navigation agents
to interact with the scene, and thus allowed for the first benchmark for Interactive Navigation.
However, the simulators above are not interactive [243, 134] or partially interactive [242]. iGibson
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encapsulates the functionalities in all previous versions of Gibson with backwards compatibility for
the static environments.

A variety of simulation environments have been proposed recently for scene-level interactive
tasks, such as Sapien [244], AI2Thor [105], VirtualHome [168], and ThreeDWorld (TDW [59]). These
simulators adopt different ways of agent-world interactions. Predefined Actions (PA) consist in
the set of actions that can be performed for each object type. When the agent is close enough
to an object and the object is in the right state (precondition), the agent can select a predefined
action, and the object is “transitioned” to the next state (postcondition). In Fig 4.2 we refer to
this technique as Rigid Bodies with Predefined Actions (RBPA). It is possible to combine Rigid
Bodies with Predefined Actions (RBPA) and Rigid Body Physics (RBP), such as first using RBPA
to grasp an object and then using RBP after releasing it. AI2Thor and VirtualHome use predefined
actions (PA) as an abstraction of physical interactions and allow agents to modify the object states
instantaneously (e.g. open a closed cabinet), suitable to study high-level task planning.

While the availability of PA helps focusing on symbolic reasoning, the full robotics problems
require RBP to simulate the tasks in all its complexity. PA limits access to all granularities of
the task, which impedes robot learning and sim2real transfer. With the purpose of simulating
full robotics tasks, iGibson uses RBP, simulating the physics behavior of all objects continuously,
with embodiment of real robots. This is crucial if the learned policy is to be deployed in the real
world. Similar to iGibson, Sapiens also uses RBP without PA, but with smaller scenes, focusing on
interaction with articulated objects. In iGibson, we enrich the articulated objects models from the
PartNet-Mobility dataset introduced by Sapien with materials and dynamics properties. TDW is
also capable of continuous RBP, with simplifications that facilitate grasping using robot avatars and
not real robot platforms.

While other simulation environments focus on particular aspects of embodied agent simulation
(Fig. 4.2), iGibson uniquely unifies a set of important tools for robotics that together enable robot
learning in large scenes: support of LiDAR and PBR rendering, speed that enable reinforcement
learning, robot integration (URDF, controllers, motion planners), and continuous physics simulation
of agents and objects. This integration of features enables tasks such as mobile manipulation,
illustrated in Fig. 4.3, including physics-based robot simulation across the entire task.

4.3 iGibson Simulation Environment

In this section, we discuss the main structure, properties and features of iGibson that support
training of robust sensor-guided policies for navigation and manipulation.
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(a) pick (b) transport (c) place

Figure 4.3: Simulated Fetch Robot performing a mobile manipulation task in a cluttered environ-
ment.

4.3.1 Simulation Characteristics and API

At the highest level, iGibson follows the OpenAI Gym [15] convention. The environment receives an
action and returns a new observation, reward and additional meta-information (e.g. if the episode
has ended). Environments are specified with config files that determine scenes, tasks, robot embod-
iments, sensors, etc. Given a config file, iGibson creates an Environment that contains a Task and
a Simulator. The Simulator contains a Scene, with a list of interactive Objects and one or more
Robot instances. It also contains a Renderer that generates virtual visual signals from any point of
view, such as a camera mounted on a robot or an external third person view. The Task defines the
reward, initial and final conditions for the scene and the agents. While modular and easy to extend,
most users may only need to interface with Environment after instantiating it with the appropriate
config files.

iGibson comes with multiple easy-to-use configs, demos and Docker [137] files. It has been
extensively adopted to train visuo-motor policies that successfully transfer to the real world [136,
135, 101, 83], and was the platform for iGibson Sim2Real Challenge at CVPR20 [155] and iGibson
Challenge at CVPR21. The provided virtual LiDAR sensor has been used for robotics research in
planning and reinforcement learning for social navigation and mobile manipulation [240]. iGibson
is easily parallelizable and supports off-screen rendering on clusters.

4.3.2 Fully Interactive Assets

iGibson provides fifteen high quality fully interactive scenes with 108 rooms (see Fig. 4.4), populated
with interactable objects. The scenes are interactive versions of fifteen 3D reconstructed scenes in-
cluded in the Gibson v1 dataset. To preserve the real-world layout and distribution of objects, we
follow a semi-automatic annotation procedure. This process is radically different from the annota-
tion we performed for the Interactive Gibson Benchmark [242]. Instead of segmenting the original
scene and replacing part of the meshes with interactive object models, we create fully interactive
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Figure 4.4: Fifteen interactive iGibson 1.0 scenes modelled after real-world reconstructions, preserv-
ing layout, distribution and size of objects.

counterparts of the 3D reconstruction from scratch. This eliminates the need to fix artifacts in the
original mesh due to reconstruction noise or segmentation error, and allows us to improve the overall
quality of the scenes.

The scene generation process is composed of two annotation phases. First, the layout of the
scene is annotated with floors, walls, doors and window openings. Then, all objects are annotated
with 3D bounding boxes and class labels. We annotate bounding boxes for 57 different object
classes, including all furniture types (doors, chairs, tables, cabinets, TVs, shelves, stoves, sinks, etc)
and some small objects (plants, laptops, speakers, etc); see project website for the complete list.
Annotating class-labeled bounding boxes allows us to scale and use different models of the same
object class, while maintaining the real-world distribution of objects in the scene. In this way, we
are able generate realistic randomized versions of the scenes (see Sec. 4.3.4). To achieve the highest
quality, for each class-labeled bounding box, we select a best fitting object model. The scene is
also annotated with lights, with which we generate light probes for physics-based rendering (see
Sec. 4.3.3). We also bake in a realistic ray-traced ambient light and other light effects in the walls,
floors and ceilings.

The object models are curated from open-source datasets: ShapeNet [24], PartNet Mobility [244,
143], and SketchFab. To preserve visual realism of the original reconstruction, we improve the object
visual quality by annotating different parts of the models with photorealistic materials, which are
then used by iGibson’s physics-based renderer. We utilize materials from CC0Texture, including
wood, marble, metal, etc. To achieve a high degree of physics realism, we curate a mapping from
visual materials to friction coefficients. We additionally compute the collision mesh, center of mass
and inertia frame for each link of all objects. To assign realistic mass and density for different
objects, we take the the median values of the top 20 search results from Amazon.

Additionally, we provide compatibility with CubiCasa5K [100] and 3D-Front [57] repositories of
home scenes. We use their scene layouts and populate them with our annotated object models,
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Figure 4.5: Robot interacting in iGibson 1.0 (large picture: 3rd person view) and virtual sensor
signals generated. Policies and solutions can make use of the following channels: (from top to
bottom, left to right) RGB, depth, semantic/instance segmentation, normals, 16D LiDAR (point
cloud), 1D LiDAR (also as occupancy map). Not depicted: optical/scene flow, joint encoders for
robot’s and objects’ joints, poses, wrenches, contact points, and map localization.

leading to additional more than 12000 interactive home scenes. These scenes contain fewer objects
than the fifteen iGibson scenes, but provide a very large number of additional models to train tasks.

The fully interactive scenes we include in iGibson enable learning of interactive tasks in large
realistic home scenes; in Sec. 4.4.3 we show that the scenes can be used to learn a useful visual
representation that accelerates the learning of downstream manipulation tasks.

4.3.3 Virtual Sensors

A crucial component of iGibson is the generation of high quality virtual sensor signals, i.e. images
and point clouds, for the simulated robots. In the following, we summarize the most relevant of
these signal generators (Fig. 4.5).

Physics Based Rendering

In iGibson, we include an open-source physics-based renderer, which implements an approximation of
BRDF models [191] with spatially varying material maps including roughness, metallic and tangent-
space surface normals, extending [43].
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LiDAR Sensing

Many real-world robots are equipped with LiDAR sensors for obstacle detection. In iGibson, we
support virtual LiDAR signals, with both 1 beam (e.g. Hokuyo) and 16 beams (e.g. Velodyne VLP-
16). We include a simple drop-out sensor noise model to emulate the common failure case in real
sensors in which some of the laser pulses do not return. Additionally, we provide the functionality
to turn the 1D LiDAR scans into local occupancy maps, which are bird’s-eye view images with three
types of pixels indicating free, occupied, or unknown space.

Additional Visual Channels

In addition to RGB and LiDAR, we support a wide range of visual modalities, such as depth maps,
optical/scene flow and normals, segmentation of semantic class, instance, material and movable
parts. These modalities can support research topics such as: depth/segmentation/normal/affordance
prediction [167, 22, 245], action-conditioned flow prediction [149], multi-modal pose estimation [32,
228, 87], and visuomotor policy training assuming perfect vision systems [242, 249].

4.3.4 Domain Randomization

It is standard practice for robot learning to partially randomize the environment’s parameters in
order to make the policy more robust [185, 218, 94, 4]. With the model being trained in a wide
distribution of environments, it will be more likely to generalize to unknown evaluation environments.
The evaluation environment may be the real world if we aim to train in simulation and transfer the
policy to a real robot. In iGibson, we include domain randomization that leads to an endless variation
of visual appearance, dynamics properties and object instances with the same scene layout.

First, we provide object randomization. The original 3D reconstructions are annotated with
class-labeled object bounding boxes. These labels can be used to instantiate any object model of
the corresponding class into the given bounding box (e.g. a bounding box labeled as “table” can be
filled with any table model). This randomization maintains the semantic layout of the scenes (i.e.
the object categories remain at the same 3D locations) while enabling near-infinite combinations of
object instances. It provides strong variation in depth maps and LiDAR signals that helps robustify
policies based on these observations (see Sec. 4.4.1).

Second, we provide material randomization. In addition to high-quality material annotation
for object and scene models, we provide a mechanism to randomize the specific material model
associated with each object part (e.g. associating a different type of wood or metal). The effect is a
stark color randomization that still represents plausible material combinations. This randomization
generates strong variations in the RGB images and helps robustify policies based on this observation
(see Sec. 4.4.1). Moreover, the dynamics properties of all object links can be randomized based on
a curated mapping from visual materials to dynamics properties.
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4.3.5 Motion Planning

Motion planners provide collision-free trajectories to move a robot from an initial to a final con-
figuration [111]. They can be used to generate collision-free navigation paths for robot bases and
collision-free motion paths for robot arms. In iGibson, we include implementations of the most
popular sampling-based motion planners: rapidly growing random trees (RRT [110]) and its bidirec-
tional variant (BiRRT [170]), and lazy probabilistic road-maps (lazyPRM [14]), adapted from [18].
Sampling-based motion planners can have rather suboptimal and intricate paths. To alleviate this,
we include acceleration-bounded shortcuts [74] for smoother paths.

4.3.6 Human-iGibson Interface

We provide a human-iGibson interface that enables users to navigate and interact in iGibson scenes
using mouse and key commands on a viewer window. The user can navigate and interact with (pull,
push, pick and place) objects. While a virtual reality or a 3D mouse interface may provide a more
intuitive experience, most users do not have the necessary hardware. This interface offers a natural
and simple way to demonstrations for imitation learning, evaluate the difficulty or feasibility of a
task, or change the scene into a better initial state, for example. This interface is also integrated
with the motion planner to command the robot to desired base and/or arm configurations. We
verify this interface facilitates efficient development of interactive robotic solutions in Sec. 4.4.2.

4.4 Experiments

The goal of our experiments is to study how iGibson’s features help to develop AI agents. Specifically,
we examine:

• (Sec.4.4.1) does iGibson’s domain randomization and realistic virtual sensor signals (in-
cluding LiDAR) allow navigation agents to generalize to unseen scenes (including the real
world)?

• (Sec.4.4.2) can the human-iGibson interface be used to efficiently train imitation learning
agents for manipulation and mobile manipulation tasks?

• (Sec.4.4.3) does the full interactivity in the scenes allow agents to learn visual representations
that accelerate learning of downstream manipulation tasks?

4.4.1 Domain Randomization and Realistic Sensor Signals for Navigation

In the first three experiments, we evaluate the generalization benefits brought by our realistic virtual
sensor signals (including LiDAR) and domain randomization. First, we compare the generalization
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Figure 4.6: Robot navigating the real-world counterpart of the iGibson 1.0 scene Rs int. The robot
executes a policy trained in simulation with virtual LiDAR signals, without domain adaptation. The
quality and realism of iGibson facilitates zero-shot policy transfer.

capabilities of vision-based reinforcement learning policies trained with and without domain ran-
domization. Concretely, we evaluate the performance of policies trained in iGibson for PointGoal
tasks [3] in held-out scenes with held-out visual textures. The observations for the policy include
the depth maps, the robot’s linear and angular velocities, the goal location in the robot’s reference
frame, and the next 10 waypoints in the shortest path between the robot’s current location and the
goal location, separated by 0.2 m. The waypoints are computed only based on the room layout, not
the objects, so the robot mainly relies on depth maps for obstacle avoidance.

Second, we evaluate the performance of robot policies trained in iGibson to navigate to a target
object (a lamp) using virtual RGB images also in held-out scenes with held-out visual textures.
The task goal is to get at least 5% of the image occupied by the pixels of the target object. The
observation for the policy only includes RGB images. In the above two experiments, we train in
eleven scenes and evaluate in four held-out scenes with held-out visual textures.

Third, we evaluate the performance of the policies trained in iGibson for a PointGoal tasks [3]
using virtual LiDAR signals with no vision inputs, and examine how well those policies transfer
to the real world without adaptation, a hard test for generalization. The observations for the policy
include a 1D LiDAR scan with 512 laser rays, the robot’s linear and angular velocities, and the goal
location in the robot’s reference frame. To focus on sim2real transferability, we train in our scene
Rs int, for which we have access to the real-world counterpart (see Fig. 4.6).
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Figure 4.7: Imitation learning from human demonstration. Top: third-person view of a robot per-
forming a pick-and-place task. The policy trained using demonstrations collected with our human-
iGibson interface achieves 98% success rate. Bottom: first-person view of a robot performing a mobile
manipulation task. The policy trained using teleoperated demonstrations achieved 70% success rate.

Results

In the first two experiments, we observe better generalization capabilities in policies using iGibson’s
domain randomization. For PointGoal navigation based on depth images, the performance goes from
0.27 to 0.40 SPL [3] and from 31.25% to 44.75% success rate when using randomization, indicating
that the larger variety of shapes observed in the training process generates more robust depth-based
policies. For object navigation based on RGB images, the performance goes from 49.75% to 57.5%
success rate, indicating that material randomization helps in obtaining RGB-based policies that
are more generalizable to unseen scenes and textures. Finally, for PointGoal navigation based on
LiDAR signals, the policy achieves 33% success rate in Rs int in iGibson, and 24% success rate in
the real-world apartment. With only a 9% drop in performance and the failures mostly occurring
in the same episodes (same pairs of the initial and goal locations in iGibson and real world), this
experiment indicates that the LiDAR signals generated in iGibson are realistic enough to facilitate
zero-shot policy transfer. In summary, as shown in Fig. 4.2, iGibson provides unique support to
train with realistic virtual sensor signals (e.g. LiDAR) and domain randomization, which leads to
more robust robot navigation policies that successfully transfer to novel scenes.
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4.4.2 Imitation Learning of Manipulation

In the second set of experiments, we evaluate iGibson as platform to train robots to perform ma-
nipulation and mobile manipulation tasks with Imitation Learning. First, we test the usability of
the human-iGibson interface to efficiently collect demonstrations of manipulation-only tasks. We
collect 50 demonstrations of pick-and-place operations with 20 mug models: pick a mug and place
in the sink (Fig. 4.7), and store pairs of state (object position) and action (desired end-effector
translation). We use the demonstrations to train a behavioral cloning policy that maps states to
actions at 20 Hz. The action space consists of two parts: a 3-dimensional continuous space for
desired end-effector translation, and a 1-dimensional discrete space for gripper opening. The desired
end-effector translation is computed using inverse kinematics (IK) and executed with a joint position
controller. The evaluation is conducted using a simulated mobile manipulator (Fetch robot), and
generalization is tested with 5 unseen mugs.

Second, we collect demonstrations for imitation learning through continuous teleoperation using
a system similar to Roboturk [133] for mobile-manipulation tasks. We collect 200 demonstrations
with a simulated Fetch robot for search-and-pick operations: the robot must navigate and interact
with a cabinet to open drawers, find a bowl and pick it (Fig. 4.7 (bottom)). The bowl and robot
initial poses are randomized between episodes. Using these demonstrations, we train a behavioral
cloning policy mapping observations to actions at 20 Hz. The observation space includes the robot
proprioceptive information (joint positions and velocities) and RGB-D images from virtual cameras
on robot’s head and wrist. The action space consists of four parts: a 1-dimensional discrete value
indicating whether to extend the arm, 2-dimensional continuous values representing the robot base’s
linear and angular velocities, 6-dimensional continuous values representing the desired pose change
of the end-effector, and 1-dimensional discrete value indicating whether to open the gripper.

Results

In our first experiment, training manipulation-only policies with imitation learning, we observe
98% success rate over 100 evaluation episodes. This experiment showcases that the human-iGibson
interface enables easy collection of effective demonstrations for imitation learning, and the integrated
motion planner is helpful for policy training. These two integrated features, as shown in Fig. 4.2,
are novel combinations offered by iGibson. In the second experiment, training mobile-manipulation
policies with imitation learning, we observe 70% success rate over 20 evaluation episodes. This
experiment indicates that the we can leverage iGibson to train imitation learning algorithms for
mobile manipulation tasks.
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Figure 4.8: Left: Example result of interaction pretraining. The agent receives RGB input and
predicts if the pixels are pushable (red: higher probability; blue: lower) (Sec. 4.4.3). The model
learns to associate edge of doors as the most pushable points. Right: Training curves for two
interactive tasks (PushDrawer,PushCabinet) with and without interaction pretraining.

4.4.3 Pretraining in Fully Interactive Scenes

In the third and final set of experiments, we evaluate the potential of using iGibson’s fully inter-
active scenes to learn an intermediate visual representation that encodes the expected outcome of
interactions with different objects. Such an intermediate visual representation may be used to ac-
celerate robot learning of manipulation tasks, since they typically require the agent to associate
visual observations with promising areas of interaction to change the state of the scene towards a
manipulation goal.

To learn such representations, we set up a virtual agent that interacts with random points in the
scenes and learns to predict the outcome of these interactions. The interaction is parameterized as
a coordinate in the virtual agent’s image observation space. We emulate a pushing interaction by
displacing the corresponding 3D location of the selected pixel by 30 cm in the opposite direction of
the surface normal, applying a maximum force of 60 N (a common payload of commercial robots).
A motion of the point for more than 10 cm is considered a success. We sample 10 random pushes
at each location, 4,000 locations in each scene. We use the images annotated with interaction
successes/failures to train a U-Net [180]-based visual encoder that predicts heatmaps of expected
interaction success from RGB input.

For the second phase, we train two policy networks for two manipulation task respectively
(PushDrawer, PushCabinet). The goal is to close the drawers or the cabinets. The policy out-
puts points to interact (push) that are given to one of our integrated motion planners to generate
an arm motion [240]. We use DQN [225] as policy learning algorithm. The predicted interaction
heatmaps are used to gate the Q-value maps predicted by the network.
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Results

Fig. 4.8 (left) depicts the result of the pretrained visual model. We observe that the heatmap
has stronger activation at the edge of the door than in the area closer to the hinge, and weak
activation on closed cabinets. The model learns to identify the best areas to push to cause motion
(further visualizations on project website). For both downstream tasks, we observe that using the
pre-trained representation significantly accelerates training (Fig. 4.8 (right)). This suggests that
the full interactability of iGibson can help agents learn useful visual representation for downstream
mobile manipulation tasks. Having a subset of objects not physically interactable will lead to false
negatives during pretraining, and prevents successful representation learning. As shown in Fig. 4.2
and discussed in Sec. 4.2, fully interactive scenes with continuous robot actions is a specialty of
iGibson.

4.5 Conclusion

We presented iGibson, a novel simulation environment for developing interactive robotic agents in
large-scale realistic scenes. iGibson includes 15 fully interactive scenes with 108 rooms, and novel
capabilities to generate high-quality virtual sensor signals, domain randomization, integration with
motion planners, and human-iGibson interface. Through experiments, we showcased that iGibson
helps to develop robust policies for navigation and manipulation. We hope that iGibson can aid
researchers in solving complex robotics problems in large-scale realistic scenes.



Chapter 5

Visual Sim-to-Real Transfer

5.1 Introduction

Deep reinforcement learning (RL) from image observations has seen much success in various domains
[141, 120, 4]. However, generalization remains a major obstacle towards reliable deployment. Recent
studies have shown that RL agents struggle to generalize to new environments, even with similar tasks
[54, 58, 35, 201]. This suggests that the learned RL policies fail to develop robust representations
against irrelevant environmental variations.

Factors of variation in RL problems can be grouped into three main categories: generalization over
different visual appearances [36, 58, 116], dynamics [156], and environment structures [230, 11, 35].
In this work, we mainly focus on zero-shot generalization to unseen environments of different visual
appearances, but the same semantics.

One well-explored solution for better generalization is data augmentation [113]. For image ob-
servations in RL, augmentation can be either manually engineered into the simulator, also known
as domain randomization [219], or automatic [109]. Prior works [12, 200] distinguish between weak
augmentations like random cropping, and strong augmentations that heavily distort the image, such
as Mixup [259] and Cutmix [254]. Strong augmentations are known to induce robust and gener-
alizable representations for image classification [81]. However, naively transplanting them to RL
hinders training and results in suboptimal performance [109]. Therefore, weak augmentations like
random cropping are the most effective for RL at training time [106]. This poses a dilemma: more
aggressive augmentations are necessary to cultivate better generalization for the visual domain [81],
but RL does not benefit to the same extent as supervised learning since the training is fragile to
excessive data variations.

We argue that the dilemma exists because it conflates two problems: policy learning and robust
representation learning. To decouple them, we draw inspiration from policy distillation [184] where
a student policy distills knowledge from one or more experts. The technique is used for different
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Training Zero-shot Evaluation

Figure 5.1: Our proposed benchmark for visual policy generalization in 4 diverse domains. Top to
bottom: DMControl Suite (15 settings), CARLA autonomous driving (5 weathers), Robosuite (12
settings), and iGibson indoor navigation (20 rooms).

purposes, such as efficient policy deployment, multi-task RL, and policy transfer [216, 6, 39]. In this
work, we introduce a new instantiation of policy distillation that addresses the dilemma effectively.

Our key insight is to solve policy optimization first, and then to robustify its representation by
imitation learning with strong augmentations. First, an expert neural network is trained by RL with
random cropping on the original environment. It learns a high-performance policy but cannot handle
distribution shifts. Second, a student network learns to mimic the behavior of the expert, but with
a crucial difference: the expert computes the ground-truth actions from unmodified observations,
while the student learns to predict the same actions from heavily corrupted observations. The
student optimizes a supervised learning objective, which has better training stability than RL, and
the strong augmentations greatly remedy overfitting at the same time. Thus, Secant is able to
acquire robust representations without sacrificing policy performance.

Our method is strictly zero-shot, because no reward signal is allowed at test time, and neither
the expert nor the student sees the test environments during training. Secant is trained once and
does not perform any test-time adaptation. In contrast, PAD [72], a prior SOTA method, adds
a self-supervised auxiliary loss on intermediate representations during training, and continues to
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Figure 5.2: Algorithm overview. Secant training is split into two stages. Left, stage 1: expert
policy is trained by RL with weak augmentation (random cropping). Right, stage 2: student
receives ground-truth action supervision from the expert at every time step, conditioned on the
same observation but with strong augmentations, such as cutout-color, Gaussian noise, Mixup, and
Cutmix. The student learns robust visual representations invariant to environment distractions,
while maintaining high policy performance.

fine-tune the policy weights using this loss signal at testing. Secant is more efficient compared
to PAD, because the latter requires expensive gradient computation at every inference step and is
impractical to deploy on mobile robots.

We benchmark on Deepmind Control Suite (DMControl) with randomized color and video back-
grounds [72], and show that Secant is able to outperform prior SOTA in 14 out of 15 unseen
environments with an average score increase of 26.5%. While DMControl is a popular benchmark,
its test-time variations are artificial and not representative of real applications. Therefore, we fur-
ther construct 3 new benchmarks with more realistic distribution shifts (Fig. 5.1), based on existing
simulators: (1) Robosuite [266]: single-hand and bimanual robotic tasks. We add new appear-
ances of table, background, and objects of interest that are varied at test time; (2) CARLA [46]:
autonomous driving across 5 unseen weather conditions that feature highly realistic rendering of
raining, sunlight changes, and shadow effects. (3) iGibson [195]: indoor object navigation in 20
distinct rooms with a large variety of interior design and layouts that we standardize. We hope that
these new challenging environments will facilitate more progress towards generalizable visual policy
learning.

To summarize our contributions:

• We propose Secant (Self Expert Cloning for Adaptation to Novel Test-environments), a
novel algorithm that solves policy learning and robust representation learning sequentially,
which achieves strong zero-shot generalization performance to unseen visual environments.
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• We design and standardize a diverse and challenging suite of benchmarks in 4 domains: Deep-
mind Control Suite (DMControl), autonomous driving, robotic manipulation, and indoor ob-
ject navigation. Except for DMControl, the other 3 environments feature test-time visual
appearance drifts that are representative of real-world applications.

• We demonstrate that Secant is able to dominate prior state-of-the-art methods on the ma-
jority of tasks, often by substantial margins, across all 4 domains.

5.2 Related Work

5.2.1 Generalization in Deep RL.

There is a plethora of literature that highlights the overfitting problem in deep RL [175, 156, 256,
99, 130, 36, 229, 35, 252, 174]. One class of approach is to re-design the training objectives to
induce invariant representations directly. [257] and [203] aim to learn robust features via deep
metric learning [56]. [177] combines RL with CycleGAN. [98] employs automatic curriculum for
generalization. PAD [72] adds a self-supervised auxiliary component that can be adapted at test
time. In contrast to these prior works, Secant is a plug-and-play method that neither modifies
the existing RL algorithm, nor requires computationally expensive test-time fine-tuning. Similar to
us, ATC [206] separates representation learning from RL. It pretrains an encoder, fine-tunes with
reward, and evaluates in the same environment. In contrast, Secant solves policy learning first
before robustification, and focuses heavily on zero-shot generalization instead.

Other works [54, 36] apply regularization techniques originally developed for supervised learning,
such as L2 regularization, BatchNorm [91], and dropout [204]. [89] regularizes RL agents via selective
noise injection and information bottleneck. These methods improve policy generalization in Atari
games and CoinRun [36]. Secant is orthogonal to these techniques and can be combined for further
improvements. We also contribute a new benchmark with more realistic tasks and variations than
video games.

5.2.2 Data Augmentation and Robustness

Semantic-preserving image transformations have been widely adopted to improve the performance
and robustness of computer vision systems [80, 81, 13, 200]. Domain randomization (DR) [219, 162]
produces randomized textures of environmental components. It is a special type of data augmenta-
tion that requires extensive manual engineering and tuning of the simulator [165, 250]. RL training,
however, benefits the most from weak forms of augmentations that do not add extra difficulty to the
policy optimization process [109, 106, 173, 72]. By design, Secant unlocks a multitude of strong
augmentation operators that are otherwise suboptimal for training in prior works. We successfully
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employ techniques from supervised image classification like Cutmix [254] and Mixup [259]; the latter
has also been explored in [231].

5.2.3 Policy Distillation

Secant belongs to the policy distillation family, a special form of knowledge distillation [82] for RL.
Prior works use policy distillation for different purposes [39]. [26] and [115] train an expert with
privileged simulator information (e.g. groundtruth physical states) to supervise a student policy that
can only access limited sensors at deployment. [263] transfers navigation policies across domains
through an intermediate proxy model. [90] reduces the non-stationary effects of RL environment
by repeated knowledge transfer. Other works involve multi-task student networks [184, 216, 6] that
distill from multiple experts simultaneously. Secant differs from these works because our expert
and student share the same task and observation information, but shoulder different responsibilities:
expert handles policy optimization while student addresses visual generalization.

Our method is related to FixMatch [200], which imposes a pseudo-label distillation loss on two
different augmentations of the same image. In contrast, our expert only needs to overfit to the
training environment, while the student distills from a frozen expert to learn robust representation.
Concurrent work [73] also validates the benefit of decoupling and strong augmentation. In com-
parison, Secant is conceptually simpler and does not require modifying the RL training pipeline.
Another closely related field is imitation learning [190, 5, 181, 84]. Our student imitates without
external demonstration data, hence the name “self-expert cloning”.

5.3 Background

5.3.1 Soft Actor-Critic

In this work, we mainly consider continuous control from raw pixels. The agent receives an image
observation o ∈ RC×H×W and outputs a continuous action a ∈ Rd. SAC [68, 69] is a state-of-the-art
off-policy RL algorithm.

It learns a policy π(a|o) and a critic Q(o, a) that maximize a weighted combination of reward
and policy entropy, E(ot,at)∼π [

∑
t rt + αH(π(·|ot))]. SAC stores experiences into a replay buffer D.

The critic parameters are updated by minimizing the Bellman error using transitions sampled from
D:

LQ = E(ot,at)∼D

[(
Q(ot, at)− (rt + γV (ot+1))

)2
]

(5.1)

By sampling an action under the current policy, we can estimate the soft state value as following:

V (ot+1) = Ea′∼π
[
Q̄(ot+1, a

′)− α log π(a′|ot+1)
]

(5.2)
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where Q̄ denotes an exponential moving average of the critic network.
The policy is updated by minimizing the divergence from the exponential of the soft-Q function:

Lπ = −Eat∼π [Q(ot, at)− α log π(at|ot)] (5.3)

where α is a learnable temperature parameter that controls the stochasticity of the optimal policy.

5.3.2 Dataset Aggregation

DAgger [181] is an iterative imitation learning algorithm with strong performance guarantees. First,
it rolls out an expert policy πe to seed an experience dataset D0. The student policy π0

s is trained
by supervised learning to best mimic the expert on those trajectories. Then at iteration i, it rolls
out πis to collect more trajectories that will be added to Di. πi+1

s will then be trained on the new
aggregated dataset Di+1, and the process repeats until convergence. Even though more advanced
imitation algorithms have been developed [84], DAgger is conceptually simple and well-suited for
Secant because our student network can query the expert for dense supervision at every time step.

5.4 Secant

The goal of our proposed self-expert cloning technique is to learn a robust policy that can gener-
alize zero-shot to unseen visual variations. Secant training can be decomposed into two stages.
Algorithm 1 shows the full pseudocode.

5.4.1 Expert Policy

In the first stage, we train a high-performance expert policy in the original environment with weak
augmentations. In visual continuous control tasks, the policy is parametrized by a feed-forward
deep convolutional network πe(O; θe) : RC×H×W → Rd that maps an image observation to a d-
dimensional continuous action vector. In practice, we employ a frame stacking technique that
concatenates T consecutive image observations along the channel dimension to incorporate temporal
information [141]. The augmentation operator is a semantic-preserving image transformation f :
RC×H×W → RC′×H′×W ′ . Prior works have found that random cropping performs the best in a
range of environments, therefore we adopt it as the default weak augmentation for the expert [109].

The expert can be optimized by any standard RL algorithm. We select Soft Actor-Critic (SAC)
due to its wide adoption in continuous control tasks [68, 69]. The expert is optimized by gradient
descent to minimize the SAC objectives (Equations 5.1 and 5.3). Since we place little restrictions on
the expert, our method can even be used to robustify pre-trained policy network checkpoints, such
as the RL Model Zoo [172].
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Algorithm 1 Secant: Self-Expert Cloning
1: πe, πs: randomly initialized expert and student policies
2: Fweak, Fstrong: sets of image augmentations
3: B: experience replay buffer
4: for t in 1, . . . , TRL do
5: Sample experience batch τt = (ot, at, ot+1, r) ∼ B
6: Sample weak augmentation f ∼ Fweak
7: Augment ot = f(ot); ot+1 = f(ot+1)
8: Update πe to minimize LRL(τt)
9: end for

10: Roll out πe to collect an initial dataset D of trajectories
11: for t in 1, . . . , Timitate do
12: Sample observation batch o ∼ D
13: Sample strong augmentation f ∼ Fstrong
14: Update πs to minimize ‖πs(f(o))− πe(o)‖F
15: Roll out πs for one environment step and add to the dataset D ← D ∪ {os}
16: end for

5.4.2 Student Policy Distillation

In the second stage, we train a student network to predict the optimal actions taken by the expert,
conditioned on the same observation but with heavy image corruption. This stage does not need
further access to the reward signal. Formally, the student is also a deep convolutional network
πs(O; θs) : RC×H×W → Rd that may have different architecture from the expert. The student
policy distills from the expert following the DAgger imitation procedure (Sec 5.3). First, we roll out
the expert policy to collect an initial dataset D of trajectories. Next, at each iteration, we select a
strong augmentation operator f ∼ Fstrong and apply it to a batch of observations o sampled from
D. We alternate between (1) updating the student’s parameters by gradient descent on a supervised
regression loss: L(o; θs) = ‖πs(f(o)) − πe(o)‖F and (2) adding more experiences to D under the
latest student policy.

In the experiments, we consider 1 type of weak augmentation (random cropping) and 6 types
of strong augmentation techniques developed in RL and robust image classification literature [80,
81, 109, 116]. We refer to weak augmentations as the ones that can substantially improve RL
optimization at training time, while strong augmentations are less effective as they make training
more difficult. We focus only on random cropping for weak augmentation in this work, and defer
other potential operators to future works. Below are brief descriptions of the augmentations we
study:

• Cutout-color (Cc): inserts a small rectangular patch of random color into the observation at
a random position.

• Random convolution (Cv): passes the input observation through a random convolutional
layer.
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• Gaussian (G): adds Gaussian noise.

• Impulse (I): adds the color analogue of salt-and-pepper noise.

• Mixup (M) [259]: linearly blends the observation with a distracting image I: f(o) = αo+(1−
α)I. We randomly sample I from 50K COCO images [128], and sample α ∼ Uniform(0.2, 0.6).

• Cutmix (Cm) [254]: similar to Cutout-color except that the patch is randomly sampled from
COCO images.

These augmentations can be categorized into low-frequency noise (Cc and Cv), high-frequency un-
structured noise (G and I), and high-frequency structured noise (M and Cm). Mixup and Cutmix with
image distractions are novel operators that have not been studied for visual policy generalization.

We also investigate combinations of the above, and find empirically that random sampling from
low-frequency and high-frequency structured noise types yields the best overall results. We note
that adding random cropping to the mix benefits performance slightly, likely because it improves
the spatial invariance of the student’s representation. We design three combination recipes (Table
5.2): Combo1 (Cc+Cv+M+Crop), Combo2 (Cc+Cv+M+Cm+Crop), and Combo3 (Cc+Cv+M). We have not
done an exhaustive search, so it is possible that better combinations exist.

5.5 Experiments

We propose a new benchmark of 4 diverse domains (Fig. 5.1) to systematically assess the generaliza-
tion ability of visual agents. They offer a wide spectrum of visual distribution shifts for testing. In
each domain, we investigate how well an algorithm trained in one environment performs on various
unseen environments in a zero-shot setting, which disallows reward signal and extra trials at test
time.

For each task, we benchmark Secant extensively against prior state-of-the-art algorithms:

• SAC: plain SAC with no augmentation.

• SAC+crop: SAC with time-consistent random cropping [106].

• DR: domain randomization. To simulate realistic deployment, our randomized training dis-
tributions are narrower than the test distributions.

• NetRand: Network Randomization [116], which augments the observation image by random
convolution.

• SAC+IDM: SAC trained with an auxiliary inverse dynamics loss [160].

• PAD: prior SOTA method on top of SAC+IDM that fine-tunes the auxiliary head at test time
[72].
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Table 5.1: DMControl: Secant outperforms prior SOTA methods substantially in 14 out of 15
settings with +26.5% boost on average.

Setting Task Secant (Ours) SAC SAC+crop DR NetRand SAC+IDM PAD
Cheetah run 582± 64 (+88.3%) 133± 26 100± 27 145± 29 309± 66 121± 38 159± 28

Ball in cup catch 958± 7 (+ 8.1%) 151± 36 359± 76 470± 252 886± 57 471± 75 563± 50
Cartpole swingup 866± 15 (+27.2%) 248± 24 537± 98 647± 48 681± 122 585± 73 630± 63
Cartpole balance 992± 6 (+ 0.8%) 930± 36 769± 63 867± 37 984± 13 835± 40 848± 29

Walker walk 856± 31 (+27.6%) 144± 19 191± 33 594± 104 671± 69 406± 29 468± 47
Walker stand 939± 7 (+ 4.3%) 365± 79 748± 60 715± 96 900± 75 743± 37 797± 46

Finger spin 910± 115 (+ 3.1%) 504± 114 847± 116 465± 314 883± 156 757± 62 803± 72
Reacher easy 639± 63 (+29.1%) 185± 70 231± 79 105± 37 495± 101 201± 32 214± 44
Cheetah run 428± 70 (+56.8%) 80± 19 102± 30 150± 34 273± 26 164± 42 206± 34

Ball in cup catch 903± 49 (+57.3%) 172± 46 477± 40 271± 189 574± 82 362± 69 436± 55
Cartpole swingup 752± 38 (+44.3%) 204± 20 442± 74 485± 67 445± 50 487± 90 521± 76
Cartpole balance 863± 32 (+12.7%) 569± 79 641± 37 766± 92 708± 28 691± 76 687± 58

Walker walk 842± 47 (+17.4%) 104± 14 244± 83 655± 55 503± 55 694± 85 717± 79
Walker stand 932± 15 274± 39 601± 36 869± 60 769± 78 902± 51 935± 20

Finger spin 861± 102 (+21.6%) 276± 81 425± 69 338± 207 708± 170 605± 61 691± 80

Following prior works [72] on DMControl, we repeat training across 10 random seeds to report
the mean and standard deviation of the rewards. We use 5 random seeds for all other simulators
and ablation studies.

5.5.1 Algorithm Details

Secant builds upon SAC, and adopts similar hyperparameters and network architecture as [106].
Observations are stacks of 3 consecutive RGB frames. For all tasks, we use a 4-layer feed-forward
ConvNet with no residual connection as encoder for both the Secant expert and student, although
they do not have to be identical. PAD, however, requires a deeper encoder network (11 layers) to
perform well in DMControl [72]. For all other simulators, we conduct a small grid search and find
that 6-layer encoders work best for both SAC+IDM and PAD. After the encoder, 3 additional fully
connected layers map the visual embedding to action.

We implement Soft Actor Critic [68, 69] for all environments in PyTorch v1.7 [159] with GPU
acceleration for visual observations. We follow the random cropping scheme in [106], which first
applies a reflection padding to expand the image, and then crop back to the original size. Some of
the augmentation operators are implemented with the Kornia library [179].

5.5.2 Deepmind Control Suite

We follow the settings in [72] and experiment with 8 tasks from DMControl. We measure generaliza-
tion to (1) randomized colors of the background and robot itself, and (2) natural videos as dynamic
background (Fig. 5.1). Secant significantly outperforms prior SOTA in all but one task, often by
substantial margins up to 88.3% (Table 5.1). All methods are trained for 500K steps with dense
task-specific rewards. SAC+crop is the same as Secant’s expert, from which the student distills
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Table 5.2: Ablation on student augmentations: given the same experts trained with random crop-
ping, we ablate 6 strong augmentations and their mixtures for the student. Combo[1-3] randomly
select an augmentation from their pool to apply to each observation.

Setting Tasks Combo1 Combo2 Combo3 Cutout-
color Conv Mixup Cutmix Gaussian Impulse

Color
Cartpole 866± 15 865± 17 863± 15 776± 33 860± 15 825± 16 751± 43 720± 86 751± 45
Cheetah 582± 64 522± 166 570± 50 343± 153 318± 123 222± 38 303± 82 373± 110 382± 121

Walker 856± 31 854± 27 832± 45 701± 75 866± 22 756± 46 658± 54 770± 56 727± 47

Video
Cartpole 752± 38 765± 55 778± 37 607± 31 556± 61 677± 43 647± 56 580± 61 639± 22
Cheetah 428± 70 409± 31 406± 33 183± 46 229± 30 309± 65 209± 43 196± 38 224± 25

Walker 842± 47 836± 36 792± 59 631± 52 531± 54 759± 64 675± 22 488± 31 471± 17
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Figure 5.3: Ablation on different strategies to apply augmentation. “S-only” denotes single-stage
policy trained with strong augmentation, and S → W means strongly-augmented expert imitated
by weakly-augmented student. The recipe for Secant is W → S .

for up to 30K steps without reward. SAC+IDM and PAD numbers are from [72].

Choice of student augmentations

We hypothesize that Secant needs multiple kinds of augmentations to resist a wide variety of distri-
bution shifts at test time. Keeping the experts fixed, we study the effect of 6 different augmentations
and their combinations on the student (Table 5.2). In the challenging random video environments,
Mixup and Cutmix tend to outperform other single operators. In most tasks, sampling from a
mixture of augmentations generalizes better than solos, thus confirming our hypothesis. We adopt
Combo1 for all Secant results in Table 5.1.
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Table 5.3: Ablation on imitation strategies. DAgger outperforms Expert-only and Student-only data
collection in the second stage.

Setting Task DAgger Expert Student

Random
Color

Cheetah run 582± 64 519± 73 347± 326
Walker walk 856± 31 818± 41 854± 33

Random
Video

Cheetah run 428± 70 291± 41 264± 241
Walker walk 842± 47 778± 67 822± 55

Single stage vs two-stage augmentation

The premise of Secant is that we cannot effectively apply strong augmentation (Combo1) in one
stage to learn robust policies. We put this assumption to test. In Fig. 5.3, “S-only” and “W-only” are
single-stage policies trained with strong or weak augmentations. X → Y denotes two-stage training,
e.g. S → W means a strongly-augmented expert is trained first, and then a weakly-augmented
student imitates it. We highlight 4 key findings:

1. Single-stage RL trained with strong augmentation (S-only) underperforms in both training
and test environments consistently, due to poor optimization.

2. The student is typically upper-bounded by the expert’s performance, thus both S → W and S
→ S produce sub-optimal policies.

3. Single-stage policy trained with random cropping (W-only) overfits on the training environment
and generalizes poorly. Adding a weakly-augmented student (W → W) does not remedy the
overfitting.

4. The only effective strategy is a weakly-augmented expert followed by a strongly-augmented
student ( W → S ), which is exactly Secant. It recovers the strong performance on the train-
ing environment, and bridges the generalization gap in unseen test environments.

Ablation on imitation strategies

Secant uses DAgger (Sec. 5.3) in the second stage, which rolls out the expert policy to collect initial
trajectories, and then follows the student’s policy. The alternatives are using expert or student policy
alone to collect all trajectory data. The former approach lacks data diversity, while the latter slows
down learning due to random actions in the beginning. Table 5.3 validates the choice of DAgger for
policy distillation.

Ablation on the parallel-distillation variant.

Can we train the expert and the student at the same time, rather than sequentially? We consider
a variant of our method, called Secant-Parallel, that trains the expert alongside the student while
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Table 5.4: Ablation on Secant-Parallel variant. It is advantageous to train expert and student
sequentially rather than in parallel.

Setting Task Secant Secant-Parallel

Random
Color

Cheetah run 582± 64 302± 248
Ball in cup catch 958± 7 790± 332
Cartpole swingup 866± 15 834± 8

Walker walk 856± 31 768± 22

Random
Video

Cheetah run 428± 70 276± 216
Ball in cup catch 903± 49 676± 280
Cartpole swingup 752± 38 764± 17

Walker walk 842± 47 699± 21

Table 5.5: Robosuite results. The 3 sets of test environments are progressively harder (easy, hard,
and extreme) with more distracting textures of the table, floor, and objects. Secant gains an
average of +337.8% reward over prior SOTA.

Setting Tasks Secant (Ours) SAC SAC+crop DR NetRand SAC+IDM PAD
Door opening 782± 93 (+ 78.5%) 17± 12 10± 8 177± 163 438± 157 3± 2 2± 1
Nut assembly 419± 63 (+ 73.1%) 3± 2 6± 5 12± 7 242± 28 13± 12 11± 10

Two-arm lifting 610± 28 (+883.9%) 29± 11 23± 10 41± 9 62± 43 20± 8 22± 7
Peg-in-hole 837± 42 (+114.6%) 186± 62 134± 72 139± 37 390± 68 150± 41 142± 37

Door opening 522± 131 (+292.5%) 11± 10 11± 7 37± 31 133± 82 2± 1 2± 1
Nut assembly 437± 102 (+141.4%) 6± 7 9± 8 33± 18 181± 53 34± 28 24± 26

Two-arm lifting 624± 40 (+923.0%) 28± 11 27± 9 61± 15 41± 25 17± 6 19± 8
Peg-in-hole 774± 76 (+140.4%) 204± 81 143± 62 194± 41 322± 72 165± 75 164± 69

Door opening 309± 147 (+120.7%) 11± 10 6± 4 52± 46 140± 107 2± 1 2± 1
Nut assembly 138± 56 (+ 53.3%) 2± 1 10± 7 12± 7 90± 61 4± 3 4± 3

Two-arm lifting 377± 37 (+1156.7%) 25± 7 12± 6 30± 13 12± 11 24± 10 21± 10
Peg-in-hole 520± 47 (+ 75.7%) 164± 63 130± 81 154± 34 296± 90 155± 73 154± 72

keeping all other settings fixed. Similar to Secant, it also enjoys the nice property of disentangling
robust representation learning from policy optimization. However, the student in Secant distills
from a fully-trained and frozen expert, while the student in Secant-Parallel has to distill from a
non-stationary expert, which leads to suboptimal performances. Table 5.4 demonstrates that it is
more beneficial to adopt our proposed two-stage procedure, as Secant outperforms Secant-Parallel
in a majority of tasks.

5.5.3 Robosuite: Robotic Manipulation

Robosuite [266] is a modular simulator for robotic research. We benchmark Secant and prior
methods on 4 challenging single-arm and bimanual manipulation tasks.

We use the Franka Panda robot model with operational space control for 4 Robosuite tasks, and
train with task-specific dense reward. All agents receive a 168× 168 egocentric RGB view as input
(example in Table 5.5). The action dimensions for door opening, nut assembly, peg-in-hole, and two-
arm lifting are 7, 7, 12 and 14, respectively. We use continuous action space. The control frequency
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Training Easy Hard Extreme

Figure 5.4: Sample Robosuite environments. Tasks in clockwise order: Door opening, Two-arm
lifting, Peg-in-hole, and Nut assembly.

is set to 20 Hz, which means that the robot receives 20 control signals during every simulation
second. The positions of moveable objects are randomized in each episode.

We provide brief descriptions of each task and their associated reward functions below. All
environments add an extra positive reward upon task completion, in addition to the dense reward
shaping. Example observations are shown in Fig. 5.4. Please refer to [266] for more details.

1. Door opening. A robot arm must learn to turn the handle and open the door in front of it.
The reward is shaped by the distance between the door handle and the robot arm, and the
rotation angle of the door handle.

2. Nut assembly. Two colored pegs (one square and one round) are mounted on the tabletop.
The robot must fit the round nut onto the round peg. At first, the robot receives a reaching
reward inversely proportional to the distance between the gripper and the nut, and a binary
reward once it grasps the nut successfully. After grasping, it obtains a lifting reward propor-
tional to the height of the nut, and a hovering reward inversely proportional to the distance
between the nut and the round peg.

3. Peg-In-Hole. One arm holds a board with a square hole in the center, and the other holds a
long peg. The two arms must coordinate to insert the peg into the hole. The reward is shaped
by the distance between two arms, along with the orientation and distance between the peg
and the hole.

4. Two-arm lifting. A large pot with two handles is placed on the table. Two arms on opposite
ends must each grab a handle and lift the pot together above certain height, while keeping
it level. At first, the agent obtains a reaching reward inversely proportional to the distance
between each arm and its respective pot handle, and a binary reward if each gripper is grasping
the correct handle. After grasping, the agent receives a lifting reward proportional to the pot’s
height above the table and capped at a certain threshold.

All agents are trained with clean background and objects, and evaluated on 3 progressively
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Table 5.6: Robustness analysis in Robosuite: we measure the cycle consistency of observation em-
beddings across trajectories of the same task but different appearances. The higher the accuracy,
the more robust the representation is against visual variations.

Cycle Tasks Secant (Ours) SAC SAC+crop DR NetRand SAC+IDM PAD

2-way Nut assembly 77.3± 7.6 (+29.3%) 24.0± 6.0 16.0± 3.7 25.3± 11.9 48.0± 15.9 29.3± 13.0 26.7± 9.4
Two arm lifting 72.0± 9.9 (+32.0%) 20.0± 0.0 18.7± 3.0 24.0± 10.1 40.0± 14.9 18.7± 3.0 18.7± 5.6

3-way Nut assembly 33.3± 8.2 (+17.3%) 16.0± 8.9 16.0± 3.7 8.0± 11.0 9.3± 10.1 10.7± 7.6 10.7± 7.6
Two arm lifting 32.0± 8.7 (+20.0%) 6.7± 9.4 2.7± 3.7 10.7± 10.1 6.7± 6.7 12.0± 7.3 12.0± 7.3

harder sets of environments (Table 5.5). We design 10 variations for each task and difficulty level,
and report the mean reward over 100 evaluation episodes (10 per variation). Reward below 100
indicates a failure to solve the task.

Secant gains an average of +287.5% more reward in easy set, +374.3% in hard set, and
+351.6% in extreme set over the best prior method. The hard and extreme settings are particularly
challenging because the objects of interest are difficult to discern from the noisy background. For nut
assembly and two-arm lifting, Secant is the only agent able to obtain non-trivial partial rewards
in hard and extreme modes consistently.

Embedding robustness analysis

To verify that our method develops high-quality representation, we measure the cycle consistency
metric proposed in [8]. First, given two trajectories U and V , observation ui ∈ U locates its nearest
neighbor in V : vj = arg minv∈V ‖φ(ui)− φ(v)‖2, where φ(·) denotes the 50-D embedding from
the visual encoder of the learned policies. Then in reverse, vj finds its nearest neighbor from U :
uk = arg minu∈U ‖φ(u)− φ(vj)‖2. ui is cycle consistent if and only if |i − k| ≤ 1, i.e. it returns
to the original position. High cycle consistency indicates that the two trajectories are accurately
aligned in the embedding space, despite their visual appearance shifts.

We also evaluate 3-way cycle consistency that involves a third trajectory W , and measure whether
ui can return to itself along both U→V →W→U and U→W→V →U . In Table 5.6, we sample 15
observations from each trajectory, and report the mean cycle consistency over 5 trials. In Fig. 5.5,
we also visualize the state embeddings of door-opening task with t-SNE [129].

Both quantitative and qualitative analyses show that Secant significantly improves the robust-
ness of visual representation over the baselines.

Saliency visualization

To better understand how the agents execute their policies, we compute saliency maps as described
in [64]. We add Gaussian perturbation to the observation image at every 5×5 pixel patch, and
visualize the saliency patterns in Fig. 5.5. Secant is able to focus on the most task-relevant
objects, even with novel textures it has not encountered during training.
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Secant NetRand PAD DR

Figure 5.5: Row 1 and 2: saliency map of the learned policies in unseen tests. Secant attends
to the components crucial to the task, while other agents often focus on irrelevant places. Row 3:
t-SNE visualization of state embeddings. Our method correctly groups semantically similar states
with different visual appearances.

5.5.4 CARLA: Autonomous Driving

To further validate Secant’s generalization ability on natural variations, we construct a realistic
driving scenario with visual observations in the CARLA simulator [46]. The goal is to drive as far
as possible along a figure-8 highway (CARLA Town 4) in 1000 time steps without colliding into 60
moving pedestrians or vehicles. Our reward function is similar to [258], which rewards progression,
penalizes collisions, and discourages abrupt steering. The RGB observation is a 300-degree panorama
of 84×420 pixels, formed by concatenating 5 cameras on the vehicle’s roof with 60-degree view each.
The output action is a 2D vector of thrust (brake is negative thrust) and steering.

We implement the environment in CARLA v0.9.9.4 [46] and adopt the reward function in [258]:

rt = v>agentûhighway ·∆t− λc · collision− λs · |steer| (5.4)

where vagent is the velocity vector of our vehicle, and the dot product with the highway’s unit
vector ûhighway encourages progression along the highway as fast as possible. ∆t = 0.05 discretizes
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Table 5.7: CARLA autonomous driving. The different weathers feature highly realistic raining,
shadow, and sunlight changes. We report distance (m) travelled in a town without collision. Secant
drives +47.7% farther on average than other agents at test time.

Setting Weather Secant (Ours) SAC SAC+crop DR NetRand SAC+IDM PAD
Training Clear noon 596± 77 282± 71 684± 114 486± 141 648± 61 582± 96 632± 126

Test
Weathers

Wet sunset 397± 99 (+ 39.8%) 57± 14 26± 18 9± 11 284± 84 25± 11 36± 12
Wet cloudy noon 629± 204 (+ 5.7%) 180± 45 283± 85 595± 260 557± 107 433± 105 515± 52

Soft rain sunset 435± 66 (+ 73.3%) 55± 28 38± 25 25± 41 251± 104 36± 32 41± 37
Mid rain sunset 470± 202 (+101.7%) 50± 8 37± 16 24± 24 233± 117 42± 23 32± 21
Hard rain noon 541± 96 (+ 18.1%) 237± 85 235± 129 341± 96 458± 72 156± 194 308± 141

CPU GPU
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Figure 5.6: Secant vs PAD inference latency. Y-axis denotes average seconds per action (log-scale).
Secant improves inference speed by an order of magnitude compared to PAD.

the simulation time. We penalize collision, measured as impulse in Newton-seconds, and excessive
steering. The respective coefficients are λc = 10−4 and λs = 1. We do not investigate more sophis-
ticated rewards like lane-keeping and traffic sign compliance, as they are not the main focus of this
paper. We use action repeat 8 for all agents.

The agents are trained at “clear noon”, and evaluated on a variety of dynamic weather and
lighting conditions at noon and sunset (Fig. 5.1). For instance, the wet weathers feature roads with
highly reflective spots. Averaged over 10 episodes per weather and 5 training runs, Secant is able
to drive +47.7% farther than prior SOTAs in tests.

Inference speed

At inference time, latency between observing and acting is crucial for real-world deployment. Unlike
Secant that only performs a single forward pass, PAD [72] requires expensive test-time gradient
computation. In addition, PAD needs a deeper ConvNet as encoder and extra test-time image
augmentations for the auxiliary self-supervised mechanism to work well [72]. These add even more
overhead during inference.

We benchmark both Secant and PAD on actual hardware for DMControl and CARLA (Fig. 5.6).
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Table 5.8: iGibson object navigation. The goal is to find and navigate to a ceiling lamp in unseen
rooms with novel decoration, furniture, and layouts (sample floor plan below). In testing, Secant
has +15.8% higher success rate (absolute percentage) than competing methods.

Setting Secant (Ours) SAC SAC+crop DR NetRand SAC+IDM PAD

Training 64.0± 3.7 68.7± 2.5 51.0± 12.0 49.6± 12.7 56.4± 3.8 54.2± 8.8 59.0± 13.4
Test: Easy 56.8± 17.2 (+17.6%) 13.8± 7.5 12.9± 7.1 17.6± 13.2 39.2± 11.7 25.9± 12.4 30.9± 12.4
Test: Hard 47.7± 11.3 (+13.9%) 9.3± 7.6 7.9± 5.3 15.2± 15.3 33.8± 11.8 12.7± 8.3 26.1± 23.0

The CPU model is Intel Xeon Gold 5220 (2.2 GHz) CPU, and the GPU model is Nvidia RTX 2080Ti.
The latency is averaged over 1000 inference steps and excludes the simulation time. We show that
Secant improves inference speed for both CARLA and DMControl by an order of magnitude in
both environments.

5.5.5 iGibson: Indoor Object Navigation

iGibson [241, 195] is an interactive simulator with highly realistic 3D rooms and furniture (Fig. 5.1).
The goal is to navigate to a lamp as closely as possible. The reward function incentivizes the agent
to maximize the proportion of pixels that the lamp occupies in view, and success is achieved when
this proportion exceeds 5% over 10 consecutive steps. Our agent is a virtual LoCoBot [67]. The
action dimension is 2, which controls linear velocity and angular velocity. We use continuous action
space with 10Hz control frequency.

Our benchmark features 1 training room and 20 test rooms, which include distinct furniture,
layout, and interior design from training. The lamp is gray in training, but has much richer textures
in testing. We construct 2 difficulty levels with 10 rooms each, depending on the extent of visual
shift. The agent is randomly spawned in a room with only RGB observation (168×168), and outputs
a 2D vector of linear and angular velocities.

We evaluate on each test room for 20 episodes and report success rates in Table 5.8. SAC without
augmentation is better than SAC+crop because the lamp can be cropped out accidentally, which
interferes with the reward function. Therefore we use plain SAC as the expert for Secant. We
consider this an edge case, since random cropping is otherwise broadly applicable. Secant achieves
+15.8% higher success rate than prior methods in unseen rooms.

5.6 Conclusion

Zero-shot generalization in visual RL has been a long-standing challenge. We introduce Secant, a
novel technique that addresses policy optimization and robust representation learning sequentially.
We demonstrate that Secant significantly outperforms prior SOTA in 4 challenging domains with
realistic test-time variations. We also systematically study different augmentation recipes, strategies,



CHAPTER 5. VISUAL SIM-TO-REAL TRANSFER 73

and distillation approaches. Compared to prior methods, we find that Secant develops more robust
visual representations and better task-specific saliency maps.



Chapter 6

Efficient Deployment of Visual
Agents

6.1 Introduction

Analyzing videos to recognize human actions is a critical task for general-purpose video understand-
ing algorithms. However, action recognition can be computationally costly, requiring processing
of several frames spatiotemporally to ascertain the correct action. As embodied applications of
video recognition for autonomous agents and mobile devices continue to scale, the need for efficient
recognition architectures with fewer parameters and compute operations remains ever-growing.

Prior efforts for video action recognition [21, 221] rely on deep neural network architectures with
expensive convolution operations across spatial and temporal context, which are often prohibitive
for resource-constrained application domains. Recent work has proposed to improve the efficiency of
the spatial and temporal operations separately [127, 169, 223, 246]. However, they are still largely
bounded by the efficiency of the base spatial aggregation method through spatial convolutions.

In images, spatial shift operations [95, 238] have been proposed as a GPU-efficient alternative to
traditional convolution operations, and architectures built using these operations have shown promise
for efficient image recognition, though accuracy is limited. Recently, a temporal shift module (TSM)
[127] based on hand-designed fixed temporal shift (Fig. 6.1, top) has been proposed to be used with
existing 2D convolutional image recognition methods [232] for action recognition. However, the
efficiency of their architecture family remains limited by the parameter and computation cost for
spatial operations, as in other prior work.

A crucial observation is that much of the input spatiotemporal context contained in consecutive
frames of a video sequence is often redundant to the action recognition task. Furthermore, the
impact of modeling capacity on the action recognition task likely varies significantly at different

74
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Figure 6.1: Top: Prior work for efficient shift-based video recognition [127] has explored (a) fixed
temporal shift operation on expensive 2D convolution features, with (c) a fixed shift allocation
network design. Bottom: We introduce RubiksNet, a new architecture based on a (b) learnable
3D-shift layer (RubiksShift) that learns to perform spatial (h,w) and temporal (t) shift operations
jointly end-to-end, while also (d) learning an effective layer-wise network allocation of a constrained
shift budget. Our model significantly improves the accuracy-efficiency boundary.

depths in the architecture. In other words, action recognition in videos poses a unique opportunity
for pushing the boundaries of the efficiency-accuracy tradeoff curve by considering efficient shift
operations in both space and time dimensions with flexible allocations.

However, a key limitation towards a naive generalization from fixed temporal shift [127] to a
spatiotemporal shift scheme is that the design space becomes intractable. In particular, we would
need to exhaustively explore the number of channels that are shifted for each dimension, the mag-
nitude of these shifts, and the underlying layer design combining each of these operations, among
other design choices. Thus, there is a clear motivation for enabling the architecture to learn the shift
operations during training itself. Recent work [95] has explored the possibility of learning shifts for
2D image processing. However, the challenge of generalizing this formulation to enable stable and
effective spatiotemporal optimization of shift-based operations on high-dimensional video input has
remained unexplored.

To this end, we propose RubiksNet: a new video action recognition architecture based on
a novel spatiotemporal shift layer (RubiksShift) that learns to perform shift operations jointly
on spatial and temporal context. We explore several variations of our design, and find that our
architecture learns effective allocations of shift operations within a constrained shift budget.
We benchmark our overall approach on several standard action recognition benchmarks, including
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large-scale temporal-focused datasets like Something-Something-v1 [63] and Something-Something-
v2 [132], as well as others like UCF-101 [202] and HMDB [108]. We observe that our architecture
can maintain competitive accuracy with the prior state-of-the-art on efficient shift-based action
recognition [127] while simultaneously improving the efficiency and number of parameters by a large
margin, up to 5.9x fewer parameters and 3.7x fewer FLOPs. Our controlled ablation analyses also
demonstrate that these efficiency-accuracy gains come from the joint ability of our architecture to
synergize spatial and temporal shift learning, as well as effective learned allocation of shift across
the network.

6.2 Related Work

6.2.1 Action Recognition

The action recognition task in videos focuses on the classification of activities in video clips amongst a
set of action classes. The initial set of deep network-based approaches processed frames individually
using 2D convolutional neural networks [102, 199, 232]. For example, Temporal Segment Network
(TSN) extracts features from sampled frames before averaging them for the final prediction [232].
While such methods are relatively efficient and parallelizable, they also do not model the temporal
dynamics well. As such, the dominant paradigm in video action recognition is centered around the
usage of spatial and temporal convolutions over the 3D space [21, 55, 96, 221]. There are also other
action recognition works that exploit temporal information [251]. While these deep networks are
more accurate, the increase in computational cost has proven to be substantial and prohibitive for
efficiency-conscious applications.

Recent progress in action recognition has largely focused on two directions:

1. Improve efficiency by considering a mixture of 3D convolutions and separate spatial + temporal
convolution operations [169, 223, 246, 262].

2. Incorporating longer term temporal reasoning [234, 262] to further improve the accuracy of
the methods.

We differentiate this work from prior efforts along both axes. Along the first, we note that
the above methods make progress towards bringing cubic scaling of 3D convolutions towards the
quadratic scaling of 2D convolutions, but the spatial kernel remains an inherent strong bound on
performance. Our approach offers an alternative that is much more efficient and has much fewer
parameters by eliminating the need for 2D or 3D convolutions in the architecture. Along the second,
our method introduces a learnable spatiotemporal shift operation that efficiently increases the effec-
tive receptive field capacity of the network, and allows it to flexibly allocate its capacity across the
network, in contrast with prior efforts that leveraged fixed shift operations throughout the network
[127].



CHAPTER 6. EFFICIENT DEPLOYMENT OF VISUAL AGENTS 77

Figure 6.2: Our proposed RubiksShift layer (Section 6.3.1) is the primary driver of our overall
RubiksNet architecture (Section 6.3.5). RubiksShift aims to perform a spatiotemporal shift operation
on input 4D tensor along each of the input channels, for spatial and temporal axes. (a) Our primary
RubiksShift layer is based on a continuous interpolated shift primitive, which enables a true gradient
with low additional overhead, and (b) our RubiksShift-Q alternative is a quantized variant. (c)
Finally, our RubiksShift-AQ variant enables learning integer shift using a temporal attention layer
(also see Figure 6.3).

6.2.2 Efficient Neural Networks for Images and Video

Convolutions have been the main computational primitive in deep neural network approaches for
computer vision tasks [33, 77, 86, 238, 260]. Recently, the shift operation has been proposed as
a more hardware efficient alternative to spatial convolution for image classification [95, 238, 261].
While shift has been examined as a replacement for 1D temporal convolutions recently [127], the
possibility of a learnable 3D shift operation has remained unexplored due to the challenges afforded
by joint learning of the shift primitive across spatial and temporal context, and the traditional
advantage spatial convolutions hold in action recognition architectures in terms of accuracy. We
aim to propose a technique that need not depend on any spatial convolution operations during
inference – only shift and pointwise convolution.

Additionally, our work remains complementary to literature on neural network compression [239],
so while our proposed method saves substantially on model size and computation cost, it is possible
that application of such techniques can lead to further gains. We also highlight work that ShuffleNet
[260], MobileNet [86, 187], and SqueezeNet [88] for efficient 2D image classification. Tran et al. [222]
factorizes 3D group convolutions while preserving channel interactions.

The aim of our work is to develop video models that can similarly be applied in embodied vision
applications, where efficiency is essential.
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6.3 Technical Approach

In this section, we describe our proposed method for efficient action recognition, where the task
is to take an input video clip and classify which of a set of human action categories is present.
We first describe our proposed RubiksShift layers for replacing spatiotemporal convolutions with
learnable spatiotemporal shifts. Then, we detail how we compose these operations into the RubiksNet
architecture.

6.3.1 RubiksShift: Learnable 3D Shift

Spatiotemporal Convolution

In a traditional convolutional network with 3D spatiotemporal convolutions, the input to each layer
of the network is a 4D tensor F ∈ RC×T×H×W , C is the number of input channels, T the tem-
poral length, and H,W are the height and width respectively. The 3D spatiotemporal convolution
operation [221] is then defined as:

Oc′,t,h,w =
∑
c,i,j,k

Kc′,c,k,i,jFc,t+k̂,h+î,w+ĵ (6.1)

where O ∈ RC′×T×H×W is the output tensor, K ∈ RC′×C×TK×HK×WK is the 3D convolution kernel,
i, j, k index along the temporal, height, and width dimensions of the kernel, and c, c′ index along
the channel dimensions. The indices î, ĵ, k̂ are the re-centered spatial and temporal indices, with
k̂ = k − bTK/2c , î = i − bHK/2c , ĵ = j − bWK/2c. Assuming H = W for simplicity, the total
number of parameters in this operation is thus C × C ′ × TK × HK

2 and the computational cost
is C × C ′ × (T × H2) × (TK × HK

2). Indeed, this operation scales quadratically with the spatial
input and cubically when considering temporal dimensions as well, both in parameters and number
of operations.

Fixed Spatiotemporal Shift

In this context, we propose a spatiotemporal shift operation as an alternative to traditional 3D
convolutions. Since the shift primitive proposed in prior work can be considered an efficient special
case of depthwise-separable convolutions with fewer memory access calls [33, 238, 261], we can
formalize the spatiotemporal shift operation as follows:

O′c,t,h,w =
∑
i,j,k

Sc,k,i,jFc,t+k̂,h+î,w+ĵ (6.2)

where S ∈ {0, 1}C×TK×HK×WK , such that Sc,k,i,j = 1 if and only if (i, j, k) = (ic, jc, kc), where
ic, jc, kc are the spatiotemporal shifts associated with each channel index c. Intuitively, if S is the
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identity tensor, no shift occurs since every element maps back to itself. We note that in practice, this
operation can be efficiently implemented by indexing into the appropriate memory address, meaning
that the shift operation itself in this form requires no floating point operations (FLOPs). We then
apply a pointwise convolution to the output of Eq. 6.2 to integrate the information across channels
to obtain our final output:

Oc′,t,h,w =
∑
c

Pc′,cO
′
c,t,h,w (6.3)

where P is the pointwise convolution kernel with only C × C ′ parameters. Assuming H = W , the
computational cost is C×C ′× (T ×H2), much lower than the spatiotemporal convolution. Notably,
when deploying such an architecture, we can fuse the shift and pointwise convolution operations
into a single efficient kernel call, meaning the final parameters and operation complexity from the
spatiotemporal shift operation itself is subsumed entirely.

Learnable Spatiotemporal Shift

Finally, a key design aspect of our proposed spatiotemporal shift operation which differentiates itself
from prior work in temporal modeling [127] is the ability of our model to learn the temporal shift
primitive. In particular, our method learns to shift over the joint spatiotemporal context jointly,
which affords the network the ability to efficiently consider a significant span of spatiotemporal
context with fewer overall parameters.

Following prior work in spatial shift [95], we consider a continuous form of the traditionally
discrete shift operation, allowing us to optimize the shift parameters directly by backpropagation.
We define the 3D shift learnable parameters as:

θ = {(γc, αc, βc) | c ∈ C} (6.4)

where γc, αc, βc are the temporal, vertical, and horizontal shift parameters for each channel c. With
this, we consider an alternative formulation of Equation 6.2:

O′c,t,h,w =
∑
i,j,k

Sθc,k,i,jFc,t+k̂,h+î,w+ĵ (6.5)

Sθc,k,i,j =
∏

(z,g)∈{(γc,k),(αc,i),(βc,j)}


∆z if g = dze,

1−∆z if g = bzc,

0 otherwise

(6.6)

with ∆z = z − bzc and g is the corresponding index to the z parameter dimension (e.g., γc cor-
responds to the time index k). Here, each sparse entry Sθc,k,i,j is a coefficient representing the
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Figure 6.3: (a) During training, our
RubiksShift-AQ variant parameterizes shift
with an attention distribution corresponding
to integer shift values. We can then train
quantized temporal shift with a true gra-
dient (under a budget constraint), in con-
strast with interpolated quantized methods
[31]. Attention softmax temperature is an-
nealed during training. (b) After training,
the resulting one-hot attention parameters
are converted to final integer shift values for
efficient inference at test time.

product of interpolated shift contributions from all 3 dimensions. Intuitively, we are constructing
a shift operation over an implicit continuous trilinearly-interpolated input activation tensor, where
the interpolation is evaluated sparsely around the local neighborhood (23-point cube) around each
shift operation at the location of each shift parameter. We note that this equation is once again
a formalism; in practice, the operation can still be written efficiently on the GPU with minimal
additional overhead with respect to discrete shift. We provide additional technical discussion in the
supplement.

Taken together, we term this combined learnable spatiotemporal shift operation RubiksShift as
shown in Figure 6.1. We observe that it enables our overall architecture to learn a joint spatiotempo-
ral shift kernel that aggregates discriminative features over the full activation in an efficient manner.

6.3.2 Interpolated Quantized shift

While the interpolated formulation above remains efficient, we can push efficiency a little higher by
considering a quantized version of the above spatiotemporal shift scheme. Our second RubiksShift
variant is a naive spatiotemporal extension based on an interpolated shift quantization mechanism on
images [31]. Briefly, during training, the model maintains a copy of the interpolated shift parameters
as floats. In the forward pass, all shifts are rounded to the nearest integer. In the backward pass,
gradient is computed with respect to the continuous shifts and these parameters are updated by
regular gradient descent. Our ablative analysis shows that while this technique does work, the lack
of a true gradient ends up hindering performance by a large margin.
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6.3.3 Attention Quantized Shift

To address the shortcomings of the interpolated quantized variant, we propose RubiksShift-AQ (Fig.
6.3) as an alternative way to quantize temporal shifts with exact gradient. Related to concurrent
attention pruning work [70] for 2D object recognition, we formulate temporal attention shift as
an operator for video action recognition that parameterizes shift with an attention distribution
corresponding to integer shift values. The attention weights are then annealed to one-hot, integer-
valued shifts over the course of the training process. In this manner, the model is able to flexibly
and stably learn a high-capacity spatiotemporal representation suitable for video action recognition,
but at final inference time is as efficient as quantized shift. Given an attention weight tensor Wattn,
we compute:

Wattnshift = softmax

(
τa

Wattn

std(Wattn)

)
(6.7)

where τa denotes the temperature of the softmax. After the softmax operation, every value in W is
normalized between 0 and 1, which represents the attention weight. At high τa, the values in W are
close to uniform, while at extremely low τa, W approaches a binary tensor with only one non-zero
entry along each channel slice. During training, we anneal τa exponentially to a low value, typically
10−3, at which stage we take the hard max operation to convert attention shift Wattnshift to the
equivalent discrete integer shift operation S for efficient inference.

6.3.4 Shift Operations Budget Constraint

Prior work [127, 95] has noted that while shift operations save parameters and FLOPs, they can
still incur latency cost through memory management. We incorporate this important aspect into
our RubikShift design. A key feature of our proposed temporal attention shift is that we can apply
a novel flexible constraint that corresponds to an overall “global shift budget”, which penalizes the
model for aggressively shifting. Importantly, the constraint is flexible in that it only penalizes a
global metric for the shift – the specific allocation across layers at various depths in the network can
then be learned by the network. Specifically, our budget constraint loss takes the form:

Lbudget =
∣∣∣∣∣
∣∣∣∣∣ 1
NL

NL∑
l=1

(
1
C ′

∑
c,∗

W(l)
nonzero

)
−B

∣∣∣∣∣
∣∣∣∣∣ (6.8)

where NL is the number of layers, B is the shift budget between 0 and 1, and W(l)
nonzero denotes the

attention weights in Wattnshift at layer l corresponding to the non-zero shift positions. We find that
our proposed RubiksShift-AQ under budget constraint enables RubiksNet to discover interesting,
non-uniform allocations of the shift budget across the network layers while preserving the global
fraction of shift operations. To our knowledge, this is the first such method with learnable discrete
shift under a shift resource constraint. Further, we find such learned allocation is critical to our
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overall design in careful ablation analysis.

6.3.5 RubiksNet: Model Architecture Design

Our overall architecture mirrors the residual block design in the ResNet architecture [77]. Each
RubiksShift layer includes shift operations as described in Sec 6.3.1 and pointwise Conv1×1 opera-
tions (Eq. 6.3) to facilitate information exchange across channels. We place RubiksShift layers at
the “residual shift” position [127], which fuses temporal information inside a residual branch. While
we choose ResNet-like structure as our backbone design, the RubiksShift operator is flexible to be
plugged into any architecture to replace the heavy convolutional layers.

Stable Shift Training

To improve the stability of spatiotemporal shift training, we normalize the shift gradients to use
only the direction of change [95], rather than the magnitude. In practice, equal normalization
over all 3 axes is sub-optimal, because the spatial dimensions of video inputs (e.g., 224 × 224)
are substantially larger than the temporal dimension (e.g., 8 frames). We propose scaled gradient
normalization, which scales the gradient vector for the spatial shifts ∆θh, ∆θw and temporal shift
∆θt onto an ellipsoid rather than a unit sphere:

∆θh = ∆θh
Z

; ∆θw = ∆θw
Z

; ∆θt = λ∆θt
Z

, (6.9)

where λ is the temporal gradient scaling factor and Z is the normalization factor:

Z =
√
||∆θh||2 + ||∆θw||2 + λ||∆θt||2. (6.10)

Architecture Size Versions

We design several variants of RubiksNet models with different sizes to accommodate different com-
putational budgets, analogous to prior work on shift for image classification [95]. Please refer to our
supplementary material for full architecture breakdown tables. In our experiments (e.g., Table 6.1),
we consider different size classes of our architecture, RubiksNet-Large, Medium, Small which all
have the same channel width but different layer depths. These size classes are chosen to correspond
with TSM [127] operating on standard ResNet-50, ResNet-34, and ResNet-18 backbones respec-
tively. Our RubiksNet-Tiny model has the same depth as RubiksNet-Small, but a thinner width.
We leverage this spectrum of models to generate our Pareto curves in Sec 5.5.
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Table 6.1: Benchmark results on the Something-Something-v2 dataset [132]. RubiksNet offers strong
performance across a range of base architectures as compared with TSM [127] architecture family.
2-clip accuracy metric per [127]; FLOPs reported for 1 clip, center crop for all architectures. (-)
indicates value not reported. (#x) denotes efficiency savings factor relative to analogous size TSM
model.

Method Size Input 1-Clip Val 2-Clip Val #Param. FLOPs/Video
Top-1 Top-5 Top-1 Top-5

TSN [232] Large 8 30.0 60.5 30.4 61.0 24.3M 33G
TRN [262] Large 8 48.8 77.6 - - 18.3M 16G
bLVNet-TAM [53] Large 8×2 59.1 86 - - 25M 23.8G

TSM [127]
Large 8 58.8 85.6 61.3 87.3 24.3M 33G

Medium 8 56.9 84.0 59.3 85.9 21.4M 29.4G
Small 8 49.3 77.6 51.3 79.5 11.3M 14.6G

RubiksNet (Ours)

Large 8 59.0 85.2 61.7 87.3 8.5M (2.9x) 15.8G (2.1x)
Medium 8 58.3 85.0 60.8 86.9 6.2M (3.5x) 11.2G (2.6x)

Small 8 57.5 84.3 59.8 86.2 3.6M (3.1x) 6.8G (2.1x)
Tiny 8 54.6 82.0 56.7 84.1 1.9M (5.9x) 3.9G (3.7x)

6.4 Experiments

In this section, we describe the experimental details (Sec. 6.4.1) and results of our method. In Sec
6.4.2, we detail our comparisons and analysis against the prior art methods on several standard
benchmarks, and we show our architecture significantly pushes the state-of-the-art on the accuracy-
efficiency frontier across large and smaller scale benchmarks. Finally, in Sec. 6.5, we conduct a series
of controlled ablation studies and analysis to verify that the core scientific aspects of our architecture
are responsible for this significant gain.

6.4.1 Experimental Setup

Overview

We leverage the Something-Something-v1 [63], Something-Something-v2 [132], UCF-101 [202], and
HMDB [108] datasets to benchmark our approach. As a general rule, we follow training and evalua-
tion protocols established in recent work [53, 127] for fair comparison, including input and metrics.
We implement our RubiksNet architecture and training pipeline in PyTorch, and write the Ru-
biksShift operators in CUDA and Pytorch C++ for efficiency.1

1See rubiksnet.stanford.edu project page for supplementary material.

rubiksnet.stanford.edu
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Table 6.2: Benchmark results on the Something-Something-v1 dataset [63]. Results are reported as
1-clip accuracy; FLOPs are reported for 1 clip, center crop for all architectures. (-) indicates value
not reported.

Method Input Val Top-1 Val Top-5 #Param. FLOPs/Video
I3D [21] 64 45.8 76.5 12.7M 111G
NL I3D + GCN [235] 32+32 46.1 76.8 303M 62.2G
S3D [246] 64 47.3 78.1 8.8M 66G
bLVNet-TAM [53] 8×2 46.4 76.6 25M 23.8G
TSN [232] 8 19.5 - 10.7M 16G
TRN [262] 8 34.4 - 18.3M 16G
ECO [267] 8 39.6 - 47.5M 32G
TSM [127] 8 45.6 74.2 24.3M 33G
RubiksNet (Ours) 8 46.4 74.5 8.5M 15.8G

Spatial Shift Pretraining

Per prior works [53, 127], we pretrain the spatial portion of our RubiksNet models on ImageNet-1k
[182] to reach comparable accuracy with spatial-shift image classification literature [95, 238]. Anal-
ogous to inflated convolution kernels [21], we initialize the spatial components of the 3D RubiksShift
layers with the learned 2D shift patterns before benchmark training.

Something-Something-V2 and -V1

Something-Something-(v2,v1) are both large-scale datasets; SS-v2 in particular has 220k video clips
and 174 action classes. The action labels, such as “pushing something from left to right” and
“putting something next to something”, cannot be predicted by looking at only a single frame. This
challenging aspect separates this benchmark from similar large-scale benchmarks like Kinetics [103],
as also noted in [127, 53]. Our spatial-pretrained RubiksNet is jointly trained end-to-end on the
full benchmark, with the gradient normalization described in Eq. 6.9 for stability. For temporal
attention shift, we initialize all the attention weights by sampling from Uniform[1, 1.05], so that
the initial attention distribution is roughly uniform over all possible shift locations. The softmax
temperature is exponentially annealed from T = 2.0 to 10−3 over 40 epochs, before conversion to
discrete integer shifts for evaluation.

UCF-101 and HMDB-51

These standard benchmarks have 101 and 51 action classes, respectively, and are smaller scale than
the SS-v1/2 datasets. We follow the standard practice from prior work [127, 232] and pretrain
our model on Kinetics [21] before fine-tuning on each benchmark. For fine-tuning, we follow the
same general learning schedule protocol as Something-Something-v2, normalizing gradients again
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Table 6.3: Quantitative results on UCF-101 [202] and HMDB-51 [108]. 2-clip metric, 1-clip FLOPs
per [127]. Pareto curve results in Fig. 6.4 and supplement.

Method Size UCF-101 HMDB-51 #Param. FLOPs
Val Top-1 Val Top-5 Val Top-1 Val Top-5

TSN [232] Large 91.7 99.2 64.7 89.9 23.7M 33G
TSM [127] Large 95.2 99.5 73.5 94.3 23.7M 33G
RubiksNet Large 95.5 99.6 74.6 94.4 8.5M 15.8G

Figure 6.4: We report the Pareto curves for our method compared with prior work [127], with size
of the circle corresponding to the number of model parameters, as per Tables 6.1-6.3. Our Rubik-
sNet architecture family consistently offers better performance-efficiency tradeoff across datasets.
(Additional vis. in supplement)

per Equation 6.9 and following a similar attention shift annealing schedule.

6.4.2 Benchmark Comparisons and Analysis

Baselines

Our key point of comparison is the recent state-of-the-art shift-based action recognition architecture
TSM [127] from ICCV 2019. In contrast with our technique, TSM operates with a hand-designed,
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Shift-T Budget (Latency)
(Ratio of Non-Zero Shift)

Layers Rubiks-AQ Fixed

all 0.25 0.25

1-4 0.23 0.25
5-12 0.15 0.25
13-48 0.23 0.25
49-51 0.74 0.25

Figure 6.5: We visualize our learned shifts distribution using our proposed attention quantized shift
RubiksNet. The bottom labels are the different shifts (−1, 0,+1) for a kernel size 3 RubiksShift-AQ
temporal kernel, and the y-axis shows the proportion of channels with that temporal shift operation.
Each colored bar represents a different layer, and we increase the depth of the network moving left
to right. We observe that RubiksNet is able to learn to save its shift operations budget from early
layers (few nonzero shift operations) to increase temporal modeling ability at deeper ones. Table
6.4 shows how this learned allocation consistently improves over heuristic techniques like TSM [127]
that have a fixed shift budget allocation regardless of depth (shown by black horizontal bars above).

fixed shift approach on the time dimension only, with heuristics found by extensive architecture
tuning. TSM also has a fixed allocation scheme across its network. In our benchmark comparisons,
we also include comparisons against much heavier but well-known architectures, like I3D, S3D, and
others [21, 235, 246, 53] for reference. Other networks, like TSN [232] and ECO [267] are also
included as comparison points.

Evaluation

We follow the evaluation convention in prior work [127, 234, 235] and report results from two
evaluation protocols. For “1-Clip Val” (Table 6.1), we sample only a single clip per video and the
center 224×224 crop for evaluation. For “2-Clip Val”, we sample 2 clips per video and take 3 equally
spaced 224×224 crops from the full resolution image scaled to 256 pixels on the shorter side. 2-Clip
evaluation yields higher accuracy, but requires more computation than 1-Clip evaluation. We employ
the same protocol for all methods in all the tables.

Quantitative Analysis

In Tables 6.1-6.3, we demonstrate that our proposed architectures consistently achieve competitive
or better accuracies than their baseline counterparts at a range of model capacities, while achieving
significantly higher efficiency in both parameter counts and FLOPs. Additionally, we provide a
detailed efficiency analysis breakdown in our supplement.
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Figure 6.6: We visualize the overall learned interpolated shift distribution across spatial (H,W ) and
temporal (T ) dimensions at different layers in the RubiksNet architecture. RubiksNet is conservative
with shift operations in early layers, while increasing the 3D receptive field in deeper layers for better
spatiotemporal modeling. Please refer to supplement for additional video visualizations.

We also benchmark several sizes of our model to draw a Pareto curve of performance and effi-
ciency. In Figure 6.4, we visualize Pareto curves for our approach against TSM on multiple bench-
marks. We observe a consistent trend that our method significantly improves the accuracy-efficiency
tradeoff for efficient action recognition architectures.

On Something-Something-v2 datasets (Table 6.1), our most efficient model, RubiksNet-Tiny,
outperforms TSM-Small by 5.3 absolute percentage points, while reducing parameters by 5.9x and
FLOPs by 3.7x. This indicates that RubiksNet performs especially well in the low-resource regime
when compared against prior work. Towards the other extreme, our highest-end model (RubiksNet-
Large) consumes 24.1% fewer parameters and comparable FLOPs to the lowest-end baseline model
(TSM-Small), while exceeding the latter’s top 1 accuracy by more than 10 absolute percentage
points.

Qualitative Analysis

In Figure 6.6, we visualize spatiotemporal shift operations across different layers of a trained Rubik-
sNet architecture, showing how the model efficiently incorporates video context to provide an action
recognition prediction by increasing its receptive field and shift operations deeper in the network.
We include additional video visualizations and analysis in the supplement.

6.5 Ablations and Analysis

Finally, we provide controlled ablations and analysis over our core RubiksNet design principles. In
particular, we verify that jointly learning our 3D-shift operations is key to our accuracy-efficiency
improvements by synergizing both spatial and temporal shift learning. Futher, we verify our
RubiksShift-AQ variant provides strong performance under a strict global shift (latency) budget.
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Table 6.4: Ablation analysis: effect of learnable spatial and temporal shifts (Sec. 6.5). RubiksNet’s
ability to learn spatial and temporal shift jointly significantly improves over fixed, heuristic methods
over spatial [238] and time [127] dimensions.

Spatial Shift Type Temporal Shift Type Val Top-1 (Large) Val Top-1 (Small)
Learned Learned 71.4 69.5
Learned Fixed [127] 69.5 67.8

Fixed [238] Learned 70.0 67.5
Fixed [238] Fixed [127] 68.3 65.7

6.5.1 Ablation: Learned vs. Fixed

Our first ablation experiment provides a controlled analysis on the effect of learning the spatial and
temporal shift aspects respectively. We describe our results in Table 6.4. We report top-1 accuracy
results on the HMDB dataset for both Large and Small model size class. Critically, the architecture
in all cases remains constant within a given model class size so there is no confounder due to different
backbones. The only change is whether an aspect is “learned” or “fixed”. In the fixed cases, we
initialize the spatial and temporal shift parameters based on the heuristic initialization provided by
ShiftNet [238] and TSM [127], respectively. Spatial and temporal learned cases are based on the
RubiksNet (RubiksShift-AQ) method. For learned temporal, we set our budget constraint to 0.25
to exactly match that of the TSM [127] fixed setting for fair comparison and to ensure the same
number of shift operations are performed. We find that our RubiksNet approach for learning spatial
and temporal dimensions jointly consistently outperforms the ablations.

6.5.2 Ablation: Attention-Quantized RubiksShift

Our second ablation verifies the efficacy of the proposed RubiksShift layers and its variations. We
report our results in Table 6.5. Here, we highlight that our RubiksShift-AQ is able to achieve
comparable accuracy with a budget constraint of only 0.125 shift ratio, in comparison to the full
RubikShift variant. In contrast with the naive RubiksShift-IQ variant, RubiksShift-AQ enables
discrete shift learned with true gradient and substantially outperforms.

We observe that given a shift budget constraint, our attention shift mechanism is able to learn
nontrivial temporal patterns (Figure 6.5) without hand-engineered prior knowledge. The network
chooses to allocate more non-zero shifts for deeper layers, likely because heavier information exchange
in the more abstract feature space is beneficial to the network’s temporal modeling capability. Such
findings are in alignment with traditional hand-designed “top-heavy” spatiotemporal convolutional
networks [246].

Importantly, RubiksNet’s learned temporal shift pattern can be thought of as an allocation of the
limited “temporal modeling power budget”. Prior works like [246] enumerate many configurations
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Table 6.5: Ablation analysis: impact of RubiksShift design (Sec. 6.5). Our attention-quantized
variant is able to learn discrete shift operations with comparable performance to full interpolated,
while observing shift/latency budget constraints.

RubiksShift Type Val Top-1 Exact Gradient Integer Shift Budget
Interpolated (RS) 61.7 X

Interpolated Quantized (RS-IQ) 58.2 X
Attention Quantized (RS-AQ) 61.6 X X X (0.125)
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Figure 6.7: Efficiency comparison at layer level. Our RubiksShift (3D learnable shift) layer shows a
large efficiency gain over analogous 3D convolution and Shift+2D convolution prior work. See Sec.
6.5.3.

of temporal modeling allocation (i.e. permutations of Conv2D and Conv3D layers), and test them
individually to find the best candidate. In contrast, our proposed method discovers a good temporal
allocation pattern from random temporal initialization.

6.5.3 Efficiency Analysis

In this section, we provide additional details and analysis of efficiency of our models, breaking
down the contribution of our 3D RubikShift block from an operations perspective with respect to
traditional 3D Convolution as well as the recent 2D Convolution + Shift (TSM) block from ICCV
2019. We also provide runtime analysis of our method.

FLOPs and Parameters Protocol

Our FLOP and parameter computation procedure aligns with prior work [127] for consistency. In
a RubiksShift layer, the main contributor to the FLOP count is the 1x1 pointwise convolution
layers, which are dramatically less expensive than traditional 2D or 3D conv. The traditional shift
operation itself is considered zero-FLOP, since it can be fused into the pointwise convolution as
one GPU kernel call [238]. Learnable shift incurs small FLOP/param cost, but otherwise similarly
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Table 6.6: Runtime Latency Comparison; Block types correspond with Figure 6.7. See Section 6.5.3
for details.

Block Type Runtime Latency
3D Conv 7.98ms ± 0.75ms

2D Conv + Shift (TSM) 3.59ms ± 0.13ms
3D Shift (Ours) 0.90ms ± 0.12ms

efficient when properly implemented.

Visualization of Efficiency Breakdown

We visualize a full efficiency analysis breakdown of our RubiksShift layer in Figure 6.7 and 6.8.
For our analysis here, we control the same input ((T,H,W ) = (8, 112, 112)) and input/output
channels (input and output is fixed to 72 channels for all blocks, so that channel count does not
affect the analysis) for all calculations. Further, all blocks here are standard blocks with consistent
channels throughout the block. Figure 6.7 shows the total cost comparison; we calculate that a
RubiksShift layer has ∼25x fewer FLOPs/params in contrast with traditional 3D, and ∼8x fewer
than TSM (shift + 2D conv). Figure 6.8 shows the breakdown by percentage of FLOPs. These gains
translate to our overall RubiksNet architecture, our gains are chiefly due to the replacement of all
spatial and spatiotemporal convolutions with a learnable shift-based operation. We note that the
full RubiksNet numbers described in the main paper (which are relatively lower, but show significant
improvement) also account for all the extra layers in the full architecture (e.g. the fully-connected
layers, which are not replaced by RubiksShift blocks).

Runtime/Latency

We also report latency analysis in the Table 6.6. We benchmark each layer/block type for runtime
on the same GPU and hardware set-up (single GPU, Titan Xp) and averaged over 100 trials. Our
input tensor in all cases is (N,T,C,H,W ) = (8, 8, 72, 56, 56) (batch size N is 8), and architecture
blocks are similarly controlled for same input/output channels as in our other efficiency analysis
breakdown. We observe that our 3D RubiksShift method has consistently better runtime than prior
work.

6.6 Conclusion

We introduced RubiksNet, a new efficient architecture for video action recognition. We examined the
potential for a model based on our proposed 3D-spatiotemporal RubiksShift operations, and explored
several novel variations of our design that enable stable joint training with flexible shift budget
allocation. We benchmarked our method on several standard action recognition benchmarks, and
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Figure 6.8: Breakdown of FLOPs by percentage for RubiksShift (Learnable 3D Shift) against 3D
Conv and 2D Conv+Shift [127] analogous blocks, controlling for channel/input. (a) shows break-
down of FLOPs for all three blocks normalized to the 3D conv block. The “savings” section indicates
the saved relative compute. (b) is normalized to itself. See Sec. 6.5.3.

find that RubiksNet can match or exceed the accuracies given by the previous state-of-the-art shift-
based action recognition architecture at a fraction of the parameter and FLOP cost. Through careful
and controlled ablations, we verified these gains are rooted in our core architecture contributions,
from the joint learning of the spatial and temporal shifts to RubiksNet’s ability to learn a flexible
allocation of shift budget to maximize accuracy at minimal shift cost.



Chapter 7

Conclusion

7.1 Summary

In this dissertation, we have explored an effective recipe towards developing algorithms and systems
that are able to train and deploy visual agents at scale: train the agents in rich simulation, then
overcome the sim-to-real gap, and finally deploy efficiently on resource-constrained devices with
lightweight video processing architectures.

To recapitulate, we start with Surreal, an open-source distributed framework that provides a
full-stack solution to accelerate reinforcement learning (RL) significantly for complex robotics tasks.
We take a deep dive into the systems design of Surreal that enables the superb performance and
scalability. Surreal is capable of deploying to a wide range of hardware from a personal laptop
to full-fledged cloud clusters. The learning performances of our distributed algorithms establish
new state of the art in visual policy learning. Next, we construct iGibson, an ecologically valid
and visually realistic simulator for home robotic tasks. We then introduce Secant, a novel policy
learning method that achieves zero-shot generalization to unseen visual environments with large
distributional shifts, which facilitates sim-to-real transfer. Finally, we design RubiksNet, a new
family of video learning architectures that unlocks deep video understanding for visual agents on
edge devices.

92
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7.2 Future Directions

Looking forward, there are many new promising techniques to scale up visual agent learning even
further. I hope to explore these exciting ideas in the next stage of my career:

• Scaling up the simulation and tasks: although the community has made tremendous
progress in more realistic and expansive simulators [195, 46, 189], we are still far from photo-
realistic rendering and highly complex tasks that resemble those in the real world. In order
to provide higher quality data to our neural network agents, we need much more engineer-
ing efforts on improving rendering efficiency and task richness. I look forward to the fruition
of several ongoing initiatives, such as NVIDIA Omniverse [152], Habitat 2.0 suite [212], and
BEHAVIOR large-scale household tasks [205].

• Scaling up the architecture: the AI community has witnessed the unreasonable effectiveness
of gigantic sequence learning models, such as GPT-3 [16] that performs natural language
understanding in a few-shot manner, CLIP [171] that associates language caption and images,
and DALL-E [176] that generates novel images conditioned on a textual description. Visual
robotics, however, has not experienced similar quantum leaps in modeling capabilities. I believe
high-capacity models like the Transformer [226] will help the embodied agents understand the
visual and physical world far better than the current state of the art, and enable strong
compositional generalization to novel scenarios.

• Scaling up the learning objective: a large and flexible neural network policy will not be
able to fully utilize its modeling capacity without an equally scalable learning objective. So far,
many reinforcement learning works [194, 49] still require manually engineered reward functions
to learn meaningful behavior. I see self-supervised learning [44] as a powerful new paradigm
to scale up visual agent learning far beyond the current limits. Some promising candidates are
autoregressive sequence objective [28, 16] and contrastive learning [75, 30, 65, 20].
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7.3 Closing Thoughts

Ever since my childhood, AI has never failed to fascinate me. The idea that deep thoughts could
emerge from the symphony of 1’s and 0’s always takes my breath away. Throughout my quest at
Stanford, I have come to appreciate that AI possesses a unique combination of scientific inquiry and
raw creativity. Unlike math and physics, which typically have a clear distinction between right and
wrong, in AI there is no “correct” way. Of course we can attempt to mimic the brain, but we do
not have to, much like airplanes do not need to flap their wings like birds. In AI research, we are
encouraged to be creative, to look at places where no one else has looked before, and sometimes are
even allowed to distort the reality a little to discover the key.

Yet this kind of creativity does not come from nowhere. With years of rigorous and painstaking
training, reading literally thousands of papers, and digesting over half a century of prior works –
only then am I able to build the castle of imagination on top of the shoulder of giants.

My Ph.D. journey has come to an end, but in the grand scheme of life, it is but a milestone. I
believe in the ultimate goal that AI will lead all humanity to a better world. I aspire to be among
the pioneers who make this a reality. It is a dream so intimately known, profoundly felt, deeply
loved, and absolutely committed to.

My real journey is just getting started.
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