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Shyamal Buch, Sanjana Srivastava, Lyne Tchapmi, Micael Tchapmi, Kent Vainio, Josiah Wong, Li Fei-Fei, Silvio Savarese

Abstract— We present iGibson 1.0, a novel simulation envi-
ronment to develop robotic solutions for interactive tasks in
large-scale realistic scenes. Our environment contains 15 fully
interactive home-sized scenes with 108 rooms populated with
rigid and articulated objects. The scenes are replicas of real-
world homes, with distribution and the layout of objects aligned
to those of the real world. iGibson 1.0 integrates several key fea-
tures to facilitate the study of interactive tasks: i) generation of
high-quality virtual sensor signals (RGB, depth, segmentation,
LiDAR, flow and so on), ii) domain randomization to change
the materials of the objects (both visual and physical) and/or
their shapes, iii) integrated sampling-based motion planners to
generate collision-free trajectories for robot bases and arms,
and iv) intuitive human-iGibson interface that enables efficient
collection of human demonstrations. Through experiments,
we show that the full interactivity of the scenes enables
agents to learn useful visual representations that accelerate
the training of downstream manipulation tasks. We also show
that iGibson features enable the generalization of navigation
agents, and that the human-iGibson interface and integrated
motion planners facilitate efficient imitation learning of human
demonstrated (mobile) manipulation behaviors. iGibson 1.0
is open-source, equipped with comprehensive examples and
documentation. For more information, visit our project website:
http://svl.stanford.edu/igibson/.

I. INTRODUCTION

Simulation environments have proliferated over the last
few years as a way to train robots and interactive agents in
a rapid and safe manner. In these environments, agents learn
to engage in physical interactions [1, 2], navigate based on
sensor signals [3, 4, 5, 6, 7], or plan long-horizon tasks [8,
9, 10, 11]. In simulation, agents learn to perform interactions
that actively change the input sensor signals and the state of
the environment towards a desired configuration, capabilities
at the core of what an embodied agent needs to achieve.

However, existing simulation environments that combine
physics simulation and robotic tasks often cater to a narrow
set of tasks and include only clean, small-scale scenes [12,
13, 14, 15, 16, 17]. The few simulation environments that
include large scenes such as homes or offices either dis-
able the possibility of interacting with the scene, focusing
only on navigation (e.g. Habitat [18]), or use simplified
modes of interaction (e.g. AI2Thor [19], VirtualHome [20]).
These simulators do not support the development of end-
to-end sensorimotor control loops for tasks that require
rich, continuous interaction with the scene. Such tasks are
difficult to accomplish in the aforementioned simulators, and
the simplified modes of interaction lead to difficulties in
transferring the learned policy onto real robots.

∗Equal contribution. All authors are with the Stanford Vision & Learning
Laboratory, Stanford University.
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Fig. 1: Robot performs an interactive task in iGibson 1.0. It operates
in the kitchen of one of iGibson’s fully interactive scenes, planning
an interaction with the arm using a integrated sampling-based
motion planner and receiving first-person view. Bottom: The same
scene can be randomized with different materials and/or object
models

We present iGibson 1.0 (alternative called just iGibson in
this manuscript), a novel simulation environment that enables
the development of embodied agents for interactive tasks in
large-scale realistic scenes (Fig. 1). Interactivity is achieved
by leveraging a physics engine processing all elements in
the scene, enabling manipulation of rigid and articulated
objects as well as mobility. iGibson 1.0 aims at unifying
several aspects of robot simulation that are often available in
different software tools, such as physics simulation for inter-
action with objects and robot control, high-quality simulated
sensors, integration with reinforcement learning frameworks,
and realistic indoor scenes that reflect the objects distribution
of real homes. This integration allows fully physics based
simulation of robot tasks (i.e. simulating the full complexity
of the task) and allows developing task and motion planning,
reinforcement learning or imitation learning solutions for
those tasks with virtual sensor signals.

iGibson 1.0 contains 15 fully interactive and visually-
realistic scenes with a total of 108 rooms. These scenes
were generated by annotating 3D reconstructions of real-
world scans (static scenes represented by a single mesh)
and converting them into fully interactive scene models
(scenes filled with articulated object models). In this process,
we respect the original object-instance layout and object-
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category distribution. The object models are extended from
open-source datasets [21, 22, 15] enriched with annotations
of material and dynamic properties. iGibson’s physics-based
renderer leverages the extra information provided in the ma-
terial annotation (maps of metallic, roughness and normals)
to generate high-quality virtual images. To further facilitate
the training of more robust visuomotor agents, iGibson
1.0 offers domain randomization procedures for materials
(both visual appearances and dynamics properties) and object
shapes while respecting the distribution of object placements
and preserving interactability. iGibson 1.0 is also equipped
with a graphical user interface that allows human users to
easily interact with the scenes, enabling efficient collection
of human demonstrations for imitation learning.

In summary, iGibson 1.0 provides the following novel fea-
tures that facilitate developing and training robotic solutions:
1) Fifteen fully interactive scenes containing 108 rooms
modelled after real world homes with articulated object
models annotated with materials and dynamics properties.
Additionally, we support importing CubiCasa5K [23] and
3D-Front [24] layouts, giving access to more than 12000
additional fully interactive scenes.
2) Realistic virtual sensor signals, including a physics-based
renderer (PBR) for RGB images, rendering of normals,
depth, point clouds, virtual LiDAR signals, and optical/scene
flow. We further integrate domain randomization functional-
ity (visual texture, dynamics properties and object instances)
that facilitates generalization to unseen scenes.
3) Useful tooling for developing robotics solutions in sim-
ulation, such as a human-computer interface for humans
to provide interactive demonstrations, and sampling-based
motion planners for navigation and manipulation.

We demonstrate the benefits of these novel features in a
comprehensive set of experiments in which visual agents are
trained for navigation and interactive tasks. Our experiments
show that iGibson 1.0 enables researchers to 1) train more
robust and generalizable sensorimotor policies thanks to its
realistic virtual sensor signals (including LiDAR) and domain
randomization mechanisms, 2) collect human demonstrations
and train imitation learning policies for manipulation and
mobile manipulation tasks, and 3) learn intermediate visual
representations linked to interactability of the scene that ac-
celerate training of downstream manipulation tasks. iGibson
1.0 is open-source and academically developed, and available
on our website http://svl.stanford.edu/igibson/.

II. RELATED WORK

The use of simulation in robotics has significantly in-
creased in recent years and the research community has
proposed a number of simulators for robotics and embodied
AI. Here, we use the terms physics simulator and simulation
environment as follows. A physics simulator is an engine
capable of computing the physical effect of actions on an
environment (e.g. motion of bodies when a force is applied,
or flow of liquid particles when being poured) [27, 28, 29,
30, 31, 32]. On the other hand, a simulation environment is
a framework that includes a physics simulator, a renderer of

virtual signals, and a set of assets (i.e. models of scenes,
objects, robots) ready to be used to study and develop
solutions for different tasks. Both components are crucial
for advancing embodied AI and robotics. Here, we focus on
the discussion of simulation environments.

Several simulation environments have been proposed re-
cently to study manipulation with stationary arms [13, 12,
17, 33, 16]. Most of them are based on Bullet [27] or
MuJoCo [28] for physics simulation, and render images with
the default renderer or a Unity [30] plugin. Different from
these simulation environments, iGibson focuses on large-
scale (house-size) scenes and includes fifteen fully interactive
scenes with 108 rooms – such as kitchens and bedrooms
– where researchers can develop solutions for navigation,
manipulation and mobile manipulation.

Closer to iGibson are simulation environments that include
large-scale realistic scenes (e.g. homes or offices), which
we summarize and compare in Table I. Gibson [25] (now
Gibson v1) was the precursor of iGibson. It includes over
1400 3D-reconstructed floors of homes and offices with
real-world object distribution and layout. Although Gibson
incorporates PyBullet as its physics engine for simulating
robot navigation, each scene is one single fully rigid object
(static mesh). Thus, it does not allow agents to interact with
the scenes other than collisions with the mesh, restricting its
use to only navigation. A similar environment is Habitat [18].
Despite its high rendering speed, Habitat uses the non-
interactive assets from Gibson v1 [25] and Matterport [34]
and therefore only supports navigation tasks and simplified
rearrangement of added objects. Recent work [35] introduced
an extension to the Gibson v1 environment to support In-
teractive Navigation [35] where parts of the reconstructions
corresponding to five object classes (chairs, tables, desks,
sofas, and doors) in several Gibson static models were seg-
mented and replaced with interactive versions. This enabled
navigation agents to interact with the scene, and thus allowed
for the first benchmark for Interactive Navigation. However,
the simulators above are not interactive [25, 18] or partially
interactive [35]. iGibson encapsulates the functionalities in
all previous versions of Gibson with backwards compatibility
for the static environments.

A variety of simulation environments have been pro-
posed recently for scene-level interactive tasks, such as
Sapien [15], AI2Thor [19], VirtualHome [20], and ThreeD-
World (TDW [26]). These simulators adopt different ways of
agent-world interactions. Predefined Actions (PA) consist in
the set of actions that can be performed for each object type.
When the agent is close enough to an object and the object
is in the right state (precondition), the agent can select a
predefined action, and the object is “transitioned” to the next
state (postcondition). In Table I we refer to this technique as
Rigid Bodies with Predefined Actions (RBPA). It is possible
to combine Rigid Bodies with Predefined Actions (RBPA)
and Rigid Body Physics (RBP), such as first using RBPA
to grasp an object and then using RBP after releasing it.
AI2Thor and VirtualHome use predefined actions (PA) as
an abstraction of physical interactions and allow agents to
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TABLE I: Comparison of Simulation Environments

iGibson 1.0 (ours) Gibson [25] Habitat [18] Sapien [15] AI2Thor [19] VirtualH [20] TDW [26]
Provided Large Scenes
Real-World / Designed

15 homes
(108 rooms) / – 1400 / – – – – / 120 rooms – / 7 – / 25

Provided Objects
Number / Materials 570 / Yes – / – – / – 2346 / No 609 / Yes 308 / No 200 / Yes

Agent/World Interaction
Forces, Predefined Actions F – – F F & PA F & PA F

Physics Engine Bullet Bullet Bullet PhysX Unity Unity Unity & Flex
Type of Simulation

Rigid Bodies Physics,
Rigid Bodies with PA,

Particles and Fluids

RBP RBP RBP RBP RBP&RBPA RBPA RBP&PF

Supported Task Nav.&Manip. Nav. Nav. Nav.&Manip. Nav.&Manip. Nav.&Manip. Nav.&Manip.
Type of Rendering PBR IBR PBR PBR,RTX PBR PBR PBR

Virtual Sensor Signals RGB,D,N
SS,FL,LiDAR

RGB,D
N,SS RGB,D,SS,S RGB,D,SS RGB,D,SS,S RGB,D

SS,FL RGB,D,SS,S

Domain Randomization
Scene,Object,Materials S,O,M - - - S S S,O

Speed ++ + +++ ++(PBR)/-(RTX) + + +

Human Interface Mouse
Keyboard - Mouse

Keyboard - Mouse
Keyboard

Natural
Language

Virtual
Reality

Integrated Motion Planner Yes No No No No No No

Specialty Phys. Int. in
Large Scenes Nav. Fast,

Nav.
Articulation,
Ray Tracing

Object States,
Task Planning

Object States,
Task Planning

Audio,
Fluids

Type of rendering: PBR:Physics-Based Rendering, IBR:Image-Based Rendering, RTX:Ray Tracing
Virtual sensor signals: RGB: Color Images, D:Depth, N:Normals, SS:Semantic Segmentation, LiDAR:Lidar, FL:Flow (optical and/or scene), S: Sounds

modify the object states instantaneously (e.g. open a closed
cabinet), suitable to study high-level task planning. While
the availability of PA helps focusing on symbolic reasoning,
the full robotics problems require RBP to simulate the tasks
in all its complexity. PA limits access to all granularities of
the task, which impedes robot learning and sim2real transfer.
With the purpose of simulating full robotics tasks, iGibson
uses RBP, simulating the physics behavior of all objects
continuously, with embodiment of real robots. This is crucial
if the learned policy is to be deployed in the real world.
Similar to iGibson, Sapiens also uses RBP without PA, but
with smaller scenes, focusing on interaction with articulated
objects. In iGibson, we enrich the articulated objects models
from the PartNet-Mobility dataset introduced by Sapien with
materials and dynamics properties. TDW is also capable of
continuous RBP, with simplifications that facilitate grasping
using robot avatars and not real robot platforms.

While other simulation environments focus on particular
aspects of embodied agent simulation (Table. I), iGibson
uniquely unifies a set of important tools for robotics that
together enable robot learning in large scenes: support of
LiDAR and PBR rendering, speed that enable reinforce-
ment learning, robot integration (URDF, controllers, motion
planners), and continuous physics simulation of agents and
objects. This integration of features enables tasks such as
mobile manipulation, illustrated in Fig. 2, including physics-
based robot simulation across the entire task.

III. IGIBSON SIMULATION ENVIRONMENT

In this section, we discuss the main structure, properties
and features of iGibson that support training of robust sensor-
guided policies for navigation and manipulation.

(a) pick (b) transport (c) place

Fig. 2: Simulated Fetch Robot performing a mobile manipulation
task in a cluttered environment.

A. Simulation Characteristics and API

At the highest level, iGibson follows the OpenAI
Gym [36] convention. The environment receives an action
and returns a new observation, reward and additional meta-
information (e.g. if the episode has ended). Environments
are specified with config files that determine scenes, tasks,
robot embodiments, sensors, etc. Given a config file, iGibson
creates an Environment that contains a Task and a
Simulator. The Simulator contains a Scene, with
a list of interactive Objects and one or more Robot
instances. It also contains a Renderer that generates virtual
visual signals from any point of view, such as a camera
mounted on a robot or an external third person view. The
Task defines the reward, initial and final conditions for the
scene and the agents. While modular and easy to extend,
most users may only need to interface with Environment
after instantiating it with the appropriate config files.

iGibson comes with multiple easy-to-use configs, demos
and Docker [37] files. It has been extensively adopted to
train visuo-motor policies that successfully transfer to the
real world [38, 39, 40, 41], and was the platform for
iGibson Sim2Real Challenge at CVPR20 [42] and iGibson
Challenge at CVPR21 [43]. The provided virtual LiDAR
sensor has been used for robotics research in planning
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and reinforcement learning for social navigation [44] and
mobile manipulation [10]. iGibson is easily parallelizable
and supports off-screen rendering on clusters.

B. Fully Interactive Assets

iGibson provides fifteen high quality fully interactive
scenes with 108 rooms (see Fig. 3), populated with in-
teractable objects. The scenes are interactive versions of
fifteen 3D reconstructed scenes included in the Gibson v1
dataset. To preserve the real-world layout and distribution of
objects, we follow a semi-automatic annotation procedure.
This process is radically different from the annotation we
performed for the Interactive Gibson Benchmark [35]. In-
stead of segmenting the original scene and replacing part
of the meshes with interactive object models, we create
fully interactive counterparts of the 3D reconstruction from
scratch. This eliminates the need to fix artifacts in the original
mesh due to reconstruction noise or segmentation error, and
allows us to improve the overall quality of the scenes.

The scene generation process is composed of two anno-
tation phases. First, the layout of the scene is annotated
with floors, walls, doors and window openings. Then, all
objects are annotated with 3D bounding boxes and class
labels. We annotate bounding boxes for 57 different object
classes, including all furniture types (doors, chairs, tables,
cabinets, TVs, shelves, stoves, sinks, etc) and some small
objects (plants, laptops, speakers, etc); see project website for
the complete list. Annotating class-labeled bounding boxes
allows us to scale and use different models of the same
object class, while maintaining the real-world distribution
of objects in the scene. In this way, we are able generate
realistic randomized versions of the scenes (see Sec. III-
D). To achieve the highest quality, for each class-labeled
bounding box, we select a best fitting object model. The
scene is also annotated with lights, with which we generate
light probes for physics-based rendering (see Sec. III-C). We
also bake in a realistic ray-traced ambient light and other
light effects in the walls, floors and ceilings.

The object models are curated from open-source datasets:
ShapeNet [21], PartNet Mobility [15, 45], and SketchFab.
To preserve visual realism of the original reconstruction,
we improve the object visual quality by annotating different
parts of the models with photorealistic materials, which are
then used by iGibson’s physics-based renderer. We utilize
materials from CC0Texture, including wood, marble, metal,
etc. To achieve a high degree of physics realism, we curate
a mapping from visual materials to friction coefficients. We
additionally compute the collision mesh, center of mass and
inertia frame for each link of all objects. To assign realistic
mass and density for different objects, we take the the median
values of the top 20 search results from Amazon.

Additionally, we provide compatibility with Cubi-
Casa5K [23] and 3D-Front [24] repositories of home scenes.
We use their scene layouts and populate them with our
annotated object models, leading to additional more than
12000 interactive home scenes. These scenes contain fewer

objects than the fifteen iGibson scenes, but provide a very
large number of additional models to train tasks.

The fully interactive scenes we include in iGibson enable
learning of interactive tasks in large realistic home scenes;
in Sec. IV-C we show that the scenes can be used to learn a
useful visual representation that accelerates the learning of
downstream manipulation tasks.

C. Virtual Sensors
A crucial component of iGibson is the generation of high

quality virtual sensor signals, i.e. images and point clouds,
for the simulated robots. In the following, we summarize the
most relevant of these signal generators (Fig. 4).

Physics Based Rendering: In iGibson, we include an
open-source physics-based renderer, which implements an
approximation of BRDF models [46] with spatially varying
material maps including roughness, metallic and tangent-
space surface normals, extending [47].

LiDAR Sensing: Many real-world robots are equipped
with LiDAR sensors for obstacle detection. In iGibson,
we support virtual LiDAR signals, with both 1 beam (e.g.
Hokuyo) and 16 beams (e.g. Velodyne VLP-16). We include
a simple drop-out sensor noise model to emulate the common
failure case in real sensors in which some of the laser pulses
do not return. Additionally, we provide the functionality
to turn the 1D LiDAR scans into local occupancy maps,
which are bird’s-eye view images with three types of pixels
indicating free, occupied, or unknown space.

Additional Visual Channels: In addition to RGB and
LiDAR, we support a wide range of visual modalities, such
as depth maps, optical/scene flow and normals, segmen-
tation of semantic class, instance, material and movable
parts. These modalities can support research topics such
as: depth/segmentation/normal/affordance prediction [48, 49,
50], action-conditioned flow prediction [51], multi-modal
pose estimation [52, 53, 54], and visuomotor policy training
assuming perfect vision systems [35, 55].

D. Domain Randomization
It is standard practice for robot learning to partially

randomize the environment’s parameters in order to make the
policy more robust [56, 57, 58, 59]. With the model being
trained in a wide distribution of environments, it will be more
likely to generalize to unknown evaluation environments. The
evaluation environment may be the real world if we aim to
train in simulation and transfer the policy to a real robot. In
iGibson, we include domain randomization that leads to an
endless variation of visual appearance, dynamics properties
and object instances with the same scene layout.

First, we provide object randomization. The original
3D reconstructions are annotated with class-labeled object
bounding boxes. These labels can be used to instantiate
any object model of the corresponding class into the given
bounding box (e.g. a bounding box labeled as “table” can be
filled with any table model). This randomization maintains
the semantic layout of the scenes (i.e. the object categories
remain at the same 3D locations) while enabling near-infinite
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Fig. 3: Fifteen interactive iGibson 1.0 scenes modelled after real-world reconstructions, preserving layout, distribution and size of objects.

Fig. 4: Robot interacting in iGibson 1.0 (large picture: 3rd person
view) and virtual sensor signals generated. Policies and solutions
can make use of the following channels: (from top to bottom, left to
right) RGB, depth, semantic/instance segmentation, normals, 16D
LiDAR (point cloud), 1D LiDAR (also as occupancy map). Not
depicted: optical/scene flow, joint encoders for robot’s and objects’
joints, poses, wrenches, contact points, and map localization.

combinations of object instances. It provides strong variation
in depth maps and LiDAR signals that helps robustify
policies based on these observations (see Sec. IV-A).

Second, we provide material randomization. In addition
to high-quality material annotation for object and scene
models, we provide a mechanism to randomize the specific
material model associated with each object part (e.g. associ-
ating a different type of wood or metal). The effect is a stark
color randomization that still represents plausible material
combinations. This randomization generates strong variations
in the RGB images and helps robustify policies based on
this observation (see Sec. IV-A). Moreover, the dynamics
properties of all object links can be randomized based
on a curated mapping from visual materials to dynamics
properties.

E. Motion Planning
Motion planners provide collision-free trajectories to move

a robot from an initial to a final configuration [60]. They
can be used to generate collision-free navigation paths for
robot bases and collision-free motion paths for robot arms.
In iGibson, we include implementations of the most popular
sampling-based motion planners: rapidly growing random
trees (RRT [61]) and its bidirectional variant (BiRRT [62]),

and lazy probabilistic road-maps (lazyPRM [63]), adapted
from [64]. Sampling-based motion planners can have rather
suboptimal and intricate paths. To alleviate this, we include
acceleration-bounded shortcuts [65] for smoother paths.

F. Human-iGibson Interface
We provide a human-iGibson interface that enables users

to navigate and interact in iGibson scenes using mouse and
key commands on a viewer window. The user can navigate
and interact with (pull, push, pick and place) objects. While a
virtual reality or a 3D mouse interface may provide a more
intuitive experience, most users do not have the necessary
hardware. This interface offers a natural and simple way to
demonstrations for imitation learning, evaluate the difficulty
or feasibility of a task, or change the scene into a better
initial state, for example. This interface is also integrated
with the motion planner to command the robot to desired
base and/or arm configurations. We verify this interface fa-
cilitates efficient development of interactive robotic solutions
in Sec. IV-B .

IV. EXPERIMENTS

The goal of our experiments is to study how iGibson’s
features help to develop AI agents. Specifically, we examine:
• (Sec.IV-A) does iGibson’s domain randomization and
realistic virtual sensor signals (including LiDAR) allow
navigation agents to generalize to unseen scenes (including
the real world)?
• (Sec.IV-B) can the human-iGibson interface be used to
efficiently train imitation learning agents for manipulation
and mobile manipulation tasks?
• (Sec.IV-C) does the full interactivity in the scenes allow
agents to learn visual representations that accelerate learning
of downstream manipulation tasks?

A. Domain Randomization and Realistic Virtual Sensor
Signals for Robot Navigation

In the first three experiments, we evaluate the generaliza-
tion benefits brought by our realistic virtual sensor signals
(including LiDAR) and domain randomization. First, we
compare the generalization capabilities of vision-based rein-
forcement learning policies trained with and without domain
randomization. Concretely, we evaluate the performance of
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Fig. 5: Robot navigating the real-world counterpart of the iGibson
1.0 scene Rs int. The robot executes a policy trained in simulation
with virtual LiDAR signals, without domain adaptation. The quality
and realism of iGibson facilitates zero-shot policy transfer.

policies trained in iGibson for PointGoal tasks [66] in held-
out scenes with held-out visual textures. The observations
for the policy include the depth maps, the robot’s linear and
angular velocities, the goal location in the robot’s reference
frame, and the next 10 waypoints in the shortest path between
the robot’s current location and the goal location, separated
by 0.2m. The waypoints are computed only based on the
room layout, not the objects, so the robot mainly relies on
depth maps for obstacle avoidance.

Second, we evaluate the performance of robot policies
trained in iGibson to navigate to a target object (a lamp)
using virtual RGB images also in held-out scenes with held-
out visual textures. The task goal is to get at least 5% of
the image occupied by the pixels of the target object. The
observation for the policy only includes RGB images. In
the above two experiments, we train in eleven scenes and
evaluate in four held-out scenes with held-out visual textures.

Third, we evaluate the performance of the policies trained
in iGibson for a PointGoal tasks [66] using virtual LiDAR
signals with no vision inputs, and examine how well those
policies transfer to the real world without adaptation, a
hard test for generalization. The observations for the policy
include a 1D LiDAR scan with 512 laser rays, the robot’s
linear and angular velocities, and the goal location in the
robot’s reference frame. To focus on sim2real transferability,
we train in our scene Rs int, for which we have access to
the real-world counterpart (see Fig. 5).

Results: In the first two experiments, we observe better
generalization capabilities in policies using iGibson’s domain
randomization. For PointGoal navigation based on depth
images, the performance goes from 0.27 to 0.40 SPL [66]
and from 31.25% to 44.75% success rate when using
randomization, indicating that the larger variety of shapes
observed in the training process generates more robust depth-
based policies. For object navigation based on RGB images,
the performance goes from 49.75% to 57.5% success rate,
indicating that material randomization helps in obtaining
RGB-based policies that are more generalizable to unseen
scenes and textures. Finally, for PointGoal navigation based
on LiDAR signals, the policy achieves 33% success rate
in Rs int in iGibson, and 24% success rate in the real-
world apartment. With only a 9% drop in performance and
the failures mostly occurring in the same episodes (same
pairs of the initial and goal locations in iGibson and real

Fig. 6: Imitation learning from human demonstration. Top: third-
person view of a robot performing a pick-and-place task. The policy
trained using demonstrations collected with our human-iGibson
interface achieves 98% success rate. Bottom: first-person view of
a robot performing a mobile manipulation task. The policy trained
using teleoperated demonstrations achieved 70% success rate.

world), this experiment indicates that the LiDAR signals
generated in iGibson are realistic enough to facilitate zero-
shot policy transfer. In summary, as shown in Table. I,
iGibson provides unique support to train with realistic virtual
sensor signals (e.g. LiDAR) and domain randomization,
which leads to more robust robot navigation policies that
successfully transfer to novel scenes.

B. Imitation Learning of Human Demonstrated (Mobile)
Manipulation

In the second set of experiments, we evaluate iGibson as
platform to train robots to perform manipulation and mobile
manipulation tasks with Imitation Learning. First, we test the
usability of the human-iGibson interface to efficiently collect
demonstrations of manipulation-only tasks. We collect 50
demonstrations of pick-and-place operations with 20 mug
models: pick a mug and place in the sink (Fig. 6), and
store pairs of state (object position) and action (desired end-
effector translation). We use the demonstrations to train a
behavioral cloning policy that maps states to actions at 20Hz.
The action space consists of two parts: a 3-dimensional
continuous space for desired end-effector translation, and a 1-
dimensional discrete space for gripper opening. The desired
end-effector translation is computed using inverse kinematics
(IK) and executed with a joint position controller. The eval-
uation is conducted using a simulated mobile manipulator
(Fetch robot), and generalization is tested with 5 unseen
mugs.

Second, we collect demonstrations for imitation learning
through continuous teleoperation using a system similar to
Roboturk [67] for mobile-manipulation tasks. We collect
200 demonstrations with a simulated Fetch robot for search-
and-pick operations: the robot must navigate and interact
with a cabinet to open drawers, find a bowl and pick it
(Fig. 6 (bottom)). The bowl and robot initial poses are
randomized between episodes. Using these demonstrations,
we train a behavioral cloning policy mapping observations
to actions at 20Hz. The observation space includes the robot
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Fig. 7: Left: Example result of interaction pretraining. The agent
receives RGB input and predicts if the pixels are pushable (red:
higher probability; blue: lower) (Sec. IV-C). The model learns to
associate edge of doors as the most pushable points. Right: Training
curves for two interactive tasks (PushDrawer,PushCabinet)
with and without interaction pretraining.

proprioceptive information (joint positions and velocities)
and RGB-D images from virtual cameras on robot’s head
and wrist. The action space consists of four parts: a 1-
dimensional discrete value indicating whether to extend the
arm, 2-dimensional continuous values representing the robot
base’s linear and angular velocities, 6-dimensional continu-
ous values representing the desired pose change of the end-
effector, and 1-dimensional discrete value indicating whether
to open the gripper.

Results: In our first experiment, training manipulation-
only policies with imitation learning, we observe 98% suc-
cess rate over 100 evaluation episodes. This experiment
showcases that the human-iGibson interface enables easy
collection of effective demonstrations for imitation learning,
and the integrated motion planner is helpful for policy train-
ing. These two integrated features, as shown in Table. I, are
novel combinations offered by iGibson. In the second exper-
iment, training mobile-manipulation policies with imitation
learning, we observe 70% success rate over 20 evaluation
episodes. This experiment indicates that the we can leverage
iGibson to train imitation learning algorithms for mobile
manipulation tasks.

C. Pretraining in Fully Interactive Scenes

In the third and final set of experiments, we evaluate
the potential of using iGibson’s fully interactive scenes
to learn an intermediate visual representation that encodes
the expected outcome of interactions with different objects.
Such an intermediate visual representation may be used to
accelerate robot learning of manipulation tasks, since they
typically require the agent to associate visual observations
with promising areas of interaction to change the state of
the scene towards a manipulation goal.

To learn such representations, we set up a virtual agent
that interacts with random points in the scenes and learns
to predict the outcome of these interactions. The interaction
is parameterized as a coordinate in the virtual agent’s image
observation space. We emulate a pushing interaction by dis-
placing the corresponding 3D location of the selected pixel
by 30 cm in the opposite direction of the surface normal,
applying a maximum force of 60N (a common payload of
commercial robots). A motion of the point for more than
10 cm is considered a success. We sample 10 random pushes
at each location, 4,000 locations in each scene. We use the
images annotated with interaction successes/failures to train

a U-Net [68]-based visual encoder that predicts heatmaps of
expected interaction success from RGB input.

For the second phase, we train two policy networks
for two manipulation task respectively (PushDrawer,
PushCabinet). The goal is to close the drawers or the
cabinets. The policy outputs points to interact (push) that are
given to one of our integrated motion planners to generate
an arm motion [10]. We use DQN [69] as policy learning
algorithm. The predicted interaction heatmaps are used to
gate the Q-value maps predicted by the network.

Results: Fig. 7 (left) depicts the result of the pretrained
visual model. We observe that the heatmap has stronger
activation at the edge of the door than in the area closer to
the hinge, and weak activation on closed cabinets. The model
learns to identify the best areas to push to cause motion (fur-
ther visualizations on project website). For both downstream
tasks, we observe that using the pre-trained representation
significantly accelerates training (Fig. 7 (right)). This sug-
gests that the full interactability of iGibson can help agents
learn useful visual representation for downstream mobile
manipulation tasks. Having a subset of objects not physically
interactable will lead to false negatives during pretraining,
and prevents successful representation learning. As shown
in Table. I and discussed in Sec. II, fully interactive scenes
with continuous robot actions is a specialty of iGibson.

V. CONCLUSION

We presented iGibson, a novel simulation environment for
developing interactive robotic agents in large-scale realistic
scenes. iGibson includes 15 fully interactive scenes with
108 rooms, and novel capabilities to generate high-quality
virtual sensor signals, domain randomization, integration
with motion planners, and human-iGibson interface. Through
experiments, we showcased that iGibson helps to develop
robust policies for navigation and manipulation. We hope
that iGibson can aid researchers in solving complex robotics
problems in large-scale realistic scenes.
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[44] C. Pérez-D’Arpino, C. Liu, P. Goebel, R. Martı́n-Martı́n, and

S. Savarese, “Robot navigation in constrained pedestrian environments
using reinforcement learning,” IEEE ICRA, 2021.

[45] K. Mo, S. Zhu, A. X. Chang, L. Yi, S. Tripathi, L. J. Guibas, and H. Su,
“Partnet: A large-scale benchmark for fine-grained and hierarchical
part-level 3d object understanding,” in IEEE CVPR, 2019.

[46] C. Schlick, “An inexpensive brdf model for physically-based render-
ing,” in Computer graphics forum, 1994.

[47] “Nadrin/pbr,” https://github.com/Nadrin/PBR, accessed: 2020-10-30.
[48] L. Porzi, S. R. Bulo, A. Penate-Sanchez, E. Ricci, and F. Moreno-

Noguer, “Learning depth-aware deep representations for robotic per-
ception,” IEEE RA-L, 2016.

[49] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova, “Depth prediction
without the sensors: Leveraging structure for unsupervised learning
from monocular videos,” in AAAI, 2019.

[50] C. Xie, Y. Xiang, A. Mousavian, and D. Fox, “The best of both
modes: Separately leveraging rgb and depth for unseen object instance
segmentation,” in CoRL, 2020.

[51] I. Nematollahi, O. Mees, L. Hermann, and W. Burgard, “Hindsight
for foresight: Unsupervised structured dynamics models from physical
interaction,” IEEE IROS, 2020.

[52] C. Choi and H. I. Christensen, “Rgb-d object pose estimation in
unstructured environments,” Robotics and Autonomous Systems, 2016.

[53] C. Wang et al., “6-pack: Category-level 6d pose tracker with anchor-
based keypoints,” in IEEE ICRA, 2020.

[54] Y. Hu, J. Hugonot, P. Fua, and M. Salzmann, “Segmentation-driven
6d object pose estimation,” in IEEE CVPR, 2019.

[55] M. Yan, Q. Sun, I. Frosio, S. Tyree, and J. Kautz, “How to close
sim-real gap? transfer with segmentation!” arxiv:2005.07695, 2020.

[56] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” RSS, 2016.

[57] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in IROS, 2017.

[58] S. James et al., “Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks,” in IEEE
CVPR, 2019.

[59] M. Andrychowicz et al., “Learning dexterous in-hand manipulation,”
IJRR, 2020.

[60] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[61] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Department of Computer Science; Iowa State University,
Tech. Rep., 1998.

[62] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered envi-
ronments,” Robotics and Autonomous Systems, 2015.

[63] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in IEEE
ICRA, 2000.

[64] Caelan Reed Garrett, “PyBullet Planning.” https://pypi.org/project/
pybullet-planning/, 2018.

[65] K. Hauser and V. Ng-Thow-Hing, “Fast smoothing of manipulator
trajectories using optimal bounded-acceleration shortcuts,” in IEEE
ICRA, 2010.

[66] P. Anderson et al., “On evaluation of embodied navigation agents,”
arxiv:1807.06757, 2018.

[67] A. Mandlekar et al., “Roboturk: A crowdsourcing platform for robotic
skill learning through imitation,” in CoRL, 2018.

[68] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Con-
ference on MICCAI, 2015.

[69] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in AAAI, 2016.

7527

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 07,2022 at 22:06:27 UTC from IEEE Xplore.  Restrictions apply. 


